Dubinkina Veronika, Smith Byron, Zhao Chunyu, Pino Cindy, Pollard Katherine S
Gladstone Institute for Data Science and Biotechnology, San Francisco, CA, 94158, USA.
Chan Zuckerberg Biohub San Francisco, San Francisco, CA, 94158, USA.
bioRxiv. 2025 Jun 7:2025.06.06.658399. doi: 10.1101/2025.06.06.658399.
Understanding the forces shaping genomic diversity within bacterial species is essential for interpreting microbiome evolution, ecology, and host associations. Here, we analyze over one hundred prevalent gut bacterial species using the Unified Human Gut Genome (UHGG) collection to characterize patterns of intra-specific genomic variability. Gene content divergence scales predictably with divergence in core genome single nucleotide polymorphisms (SNPs), though there is substantial variability in evolutionary dynamics across species. Overall, accessory genes exhibit consistently faster linkage decay compared to core SNPs, highlighting the fluidity of functional repertoires within species boundaries. This signal is strongest for mobile genetic elements, which show minimal linkage to core genome SNPs. Together, our findings reveal species-specific recombination regimes in the gut microbiome, underscoring the importance of accounting for horizontal gene transfer and genome plasticity in microbiome-wide association studies and evolutionary models.
了解塑造细菌物种内基因组多样性的力量对于解释微生物组的进化、生态和宿主关联至关重要。在这里,我们使用统一人类肠道基因组(UHGG)数据集分析了一百多种常见的肠道细菌物种,以表征种内基因组变异性模式。基因含量差异与核心基因组单核苷酸多态性(SNP)的差异呈可预测的比例关系,尽管不同物种的进化动态存在很大差异。总体而言,与核心SNP相比,辅助基因的连锁不平衡衰减始终更快,这突出了物种边界内功能库的流动性。对于移动遗传元件,这种信号最强,它们与核心基因组SNP的连锁关系最小。我们的研究结果共同揭示了肠道微生物组中物种特异性的重组机制,强调了在全微生物组关联研究和进化模型中考虑水平基因转移和基因组可塑性的重要性。