Suppr超能文献

在一项用于呼吸道疾病检测的分散式自带设备试验中的纵向语音监测。

Longitudinal voice monitoring in a decentralized Bring Your Own Device trial for respiratory illness detection.

作者信息

Santamaria Mar, Christakis Yiorgos, Demanuele Charmaine, Zhang Yao, Tuttle Pirinka Georgiev, Mamashli Fahimeh, Bai Jiawei, Landman Rogier, Chappie Kara, Kell Stefan, Samuelsson John G, Talbert Kisha, Seoane Leonardo, Mark Roberts W, Kabagambe Edmond Kato, Capelouto Joseph, Wacnik Paul, Selig Jessica, Adamowicz Lukas, Khan Sheraz, Mather Robert J

机构信息

Pfizer Inc., Cambridge, MA, USA.

Ochsner Health, New Orleans, LA, USA.

出版信息

NPJ Digit Med. 2025 Apr 11;8(1):202. doi: 10.1038/s41746-025-01584-4.

Abstract

The Acute Respiratory Illness Surveillance (AcRIS) Study was a low-interventional trial that examined voice changes with respiratory illnesses. This longitudinal trial was the first of its kind, conducted in a fully decentralized manner via a Bring Your Own Device mobile application. The app enabled social-media-based recruitment, remote consent, at-home sample collection, and daily remote voice and symptom capture in real-world settings. From April 2021 to April 2022, the trial enrolled 9151 participants, followed for up to eight weeks. Despite mild symptoms experienced by reverse transcription polymerase chain reaction (RT-PCR) positive participants, two machine learning algorithms developed to screen respiratory illnesses reached the pre-specified success criteria. Algorithm testing on independent cohorts demonstrated that the algorithm's sensitivity increased as symptoms increased, while specificity remained consistent. Study findings suggest voice features can identify individuals with viral respiratory illnesses and provide valuable insights into fully decentralized clinical trials design, operation, and adoption (study registered at ClinicalTrials.gov (NCT04748445) on 5 February 2021).

摘要

急性呼吸道疾病监测(AcRIS)研究是一项低干预试验,旨在研究呼吸道疾病引起的声音变化。这项纵向试验尚属首次,通过自带设备移动应用程序以完全分散的方式进行。该应用程序支持基于社交媒体的招募、远程同意、在家中采集样本,以及在现实环境中每天远程采集声音和症状信息。从2021年4月到2022年4月,该试验招募了9151名参与者,随访时间长达八周。尽管逆转录聚合酶链反应(RT-PCR)呈阳性的参与者症状较轻,但为筛查呼吸道疾病而开发的两种机器学习算法达到了预先设定的成功标准。在独立队列上进行的算法测试表明,随着症状加重,该算法的敏感性增加,而特异性保持一致。研究结果表明,声音特征可以识别患有病毒性呼吸道疾病的个体,并为完全分散的临床试验设计、操作和应用提供有价值的见解(该研究于2021年2月5日在ClinicalTrials.gov(NCT04748445)注册)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b813/11986159/7adb65bee305/41746_2025_1584_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验