Suppr超能文献

利用可穿戴设备的多模态数据检测 COVID-19:来自 TemPredict 研究的初步结果。

Detection of COVID-19 using multimodal data from a wearable device: results from the first TemPredict Study.

机构信息

Osher Center for Integrative Health, University of California San Francisco, San Francisco, CA, USA.

MIT Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA.

出版信息

Sci Rep. 2022 Mar 2;12(1):3463. doi: 10.1038/s41598-022-07314-0.

Abstract

Early detection of diseases such as COVID-19 could be a critical tool in reducing disease transmission by helping individuals recognize when they should self-isolate, seek testing, and obtain early medical intervention. Consumer wearable devices that continuously measure physiological metrics hold promise as tools for early illness detection. We gathered daily questionnaire data and physiological data using a consumer wearable (Oura Ring) from 63,153 participants, of whom 704 self-reported possible COVID-19 disease. We selected 73 of these 704 participants with reliable confirmation of COVID-19 by PCR testing and high-quality physiological data for algorithm training to identify onset of COVID-19 using machine learning classification. The algorithm identified COVID-19 an average of 2.75 days before participants sought diagnostic testing with a sensitivity of 82% and specificity of 63%. The receiving operating characteristic (ROC) area under the curve (AUC) was 0.819 (95% CI [0.809, 0.830]). Including continuous temperature yielded an AUC 4.9% higher than without this feature. For further validation, we obtained SARS CoV-2 antibody in a subset of participants and identified 10 additional participants who self-reported COVID-19 disease with antibody confirmation. The algorithm had an overall ROC AUC of 0.819 (95% CI [0.809, 0.830]), with a sensitivity of 90% and specificity of 80% in these additional participants. Finally, we observed substantial variation in accuracy based on age and biological sex. Findings highlight the importance of including temperature assessment, using continuous physiological features for alignment, and including diverse populations in algorithm development to optimize accuracy in COVID-19 detection from wearables.

摘要

早期发现 COVID-19 等疾病可能是减少疾病传播的关键工具,因为它可以帮助个人识别何时需要自我隔离、进行检测以及获得早期医疗干预。可以连续测量生理指标的消费者可穿戴设备有望成为早期疾病检测的工具。我们使用消费者可穿戴设备(Oura Ring)从 63153 名参与者中收集了日常问卷调查数据和生理数据,其中 704 人自我报告可能患有 COVID-19 疾病。我们从这 704 名参与者中选择了 73 名,他们通过 PCR 检测可靠地确认了 COVID-19,并且具有高质量的生理数据,可用于机器学习分类算法来识别 COVID-19 的发病。该算法在参与者寻求诊断性检测之前平均提前 2.75 天识别出 COVID-19,其敏感性为 82%,特异性为 63%。接受者操作特征(ROC)曲线下面积(AUC)为 0.819(95%CI[0.809,0.830])。包含连续体温的 AUC 比不包含该特征高 4.9%。为了进一步验证,我们在部分参与者中获得了 SARS-CoV-2 抗体,并识别出另外 10 名自我报告 COVID-19 疾病且抗体检测确认的参与者。该算法的总体 ROC AUC 为 0.819(95%CI[0.809,0.830]),在这些额外的参与者中,敏感性为 90%,特异性为 80%。最后,我们观察到准确性因年龄和生物学性别而异。这些发现强调了在算法开发中包含体温评估、使用连续生理特征进行校准以及纳入不同人群的重要性,以优化可穿戴设备中 COVID-19 检测的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/706e/8891385/dbcf20b20ab6/41598_2022_7314_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验