Iriarte-Mesa Claudia, Bergen Janice, Danielyan Kristina, Crudo Francesco, Marko Doris, Kählig Hanspeter, Del Favero Giorgia, Kleitz Freddy
Department of Functional Materials and Catalysis, Faculty of Chemistry University of Vienna Währinger Str. 42 1090 Vienna Austria.
Vienna Doctoral School in Chemistry (DoSChem) University of Vienna Währinger Str. 42 1090 Vienna Austria.
Small Sci. 2024 Aug 1;5(1):2400112. doi: 10.1002/smsc.202400112. eCollection 2025 Jan.
The intestinal compartment confines the gut microbiome while enabling food passage and absorption of active molecules. For the rational design of oral formulations aiming to overcome physiological barriers of the gut, it is crucial to understand how cells respond to the presence of nanoparticulate materials. Taking advantage of the versatility and biocompatibility of dendritic mesoporous silica nanoparticles (DMSNs), several post-grafting strategies are developed to diversify the surface properties of spherical DMSNs and then probe interactions with the intestinal coculture cell model Caco-2/HT29-MTX-E12. Herein, the functionalization of DMSNs with polyethylene glycol, phosphonate, methyl, and farnesol moieties enables the investigation of both particle penetration through the mucus layer and pathways relevant to intracellular uptake. Contributions of surface chemistry, charge, and colloidal stability are correlated with the modulation of particle movement through the mucus and the organization of cell-cell junctions. Hydrophilic and negative functionalities favor particle distribution toward the intestinal monolayer. Instead, hydrophobic DMSNs are hindered by the mucus, possibly limiting cell contact. Hybrid surfaces, combining phosphonate and long carbon chain functions, support diffusion through the mucus and foster the paracellular permeability as well as the transient barrier relapse, as indicated by increased cell-cell distances and reorganization of tight junctions.
肠道隔室限制了肠道微生物群,同时允许食物通过并吸收活性分子。对于旨在克服肠道生理屏障的口服制剂的合理设计而言,了解细胞如何对纳米颗粒材料的存在做出反应至关重要。利用树枝状介孔二氧化硅纳米颗粒(DMSN)的多功能性和生物相容性,开发了几种接枝后策略,以使球形DMSN的表面性质多样化,进而探究其与肠道共培养细胞模型Caco-2/HT29-MTX-E12的相互作用。在此,用聚乙二醇、膦酸酯、甲基和法尼醇部分对DMSN进行功能化,能够研究颗粒穿过黏液层的渗透情况以及与细胞内摄取相关的途径。表面化学、电荷和胶体稳定性的作用与颗粒在黏液中的移动调节以及细胞间连接的组织相关。亲水性和负性官能团有利于颗粒向肠道单层分布。相反,疏水性DMSN会受到黏液的阻碍,可能会限制与细胞的接触。如细胞间距离增加和紧密连接的重新组织所示,结合膦酸酯和长碳链功能的混合表面支持通过黏液的扩散,并促进细胞旁通透性以及短暂的屏障恢复。