文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

表面拓扑结构模拟病毒的纳米颗粒增强口服递送

Nanoparticles exhibiting virus-mimic surface topology for enhanced oral delivery.

机构信息

School of Pharmacy, China Medical University, Shenyang, 110122, China.

School of Intelligent Medicine, China Medical University, Shenyang, 110122, China.

出版信息

Nat Commun. 2023 Nov 24;14(1):7694. doi: 10.1038/s41467-023-43465-y.


DOI:10.1038/s41467-023-43465-y
PMID:38001086
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10673925/
Abstract

The oral delivery of nano-drug delivery systems (Nano-DDS) remains a challenge. Taking inspirations from viruses, here we construct core-shell mesoporous silica nanoparticles (NPs, ~80 nm) with virus-like nanospikes (VSN) to simulate viral morphology, and further modified VSN with L-alanine (CVSN) to enable chiral recognition for functional bionics. By comparing with the solid silica NPs, mesoporous silica NPs and VSN, we demonstrate the delivery advantages of CVSN on overcoming intestinal sequential barriers in both animals and human via multiple biological processes. Subsequently, we encapsulate indomethacin (IMC) into the nanopores of NPs to mimic gene package, wherein the payloads are isolated from bio-environments and exist in an amorphous form to increase their stability and solubility, while the chiral nanospikes multi-sited anchor and chiral recognize on the intestinal mucosa to enhance the penetrability and ultimately improve the oral adsorption of IMC. Encouragingly, we also prove the versatility of CVSN as oral Nano-DDS.

摘要

口服纳米给药系统(Nano-DDS)仍然是一个挑战。受病毒的启发,我们构建了具有类似病毒纳米刺(VSN)的核壳介孔硅纳米颗粒(NPs,~80nm),以模拟病毒形态,并进一步用 L-丙氨酸(CVSN)修饰 VSN,以实现手性识别的功能仿生。通过与实心硅纳米颗粒、介孔硅纳米颗粒和 VSN 进行比较,我们证明了 CVSN 通过多种生物学过程克服了动物和人体内肠道连续屏障的输送优势。随后,我们将吲哚美辛(IMC)包封到 NPs 的纳米孔中,以模拟基因包,其中有效载荷与生物环境隔离,并以无定形形式存在,以提高其稳定性和溶解度,而手性纳米刺多点锚定并在手性识别肠黏膜,以增强渗透性,最终提高 IMC 的口服吸附。令人鼓舞的是,我们还证明了 CVSN 作为口服纳米给药系统的多功能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10673925/51f2a9d40606/41467_2023_43465_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10673925/a955411962c6/41467_2023_43465_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10673925/504e3940d1ed/41467_2023_43465_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10673925/4e8170eebf44/41467_2023_43465_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10673925/427f19682d47/41467_2023_43465_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10673925/97f67a2414ee/41467_2023_43465_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10673925/941c9b2cbf1d/41467_2023_43465_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10673925/fda0b43fcc5f/41467_2023_43465_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10673925/51f2a9d40606/41467_2023_43465_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10673925/a955411962c6/41467_2023_43465_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10673925/504e3940d1ed/41467_2023_43465_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10673925/4e8170eebf44/41467_2023_43465_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10673925/427f19682d47/41467_2023_43465_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10673925/97f67a2414ee/41467_2023_43465_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10673925/941c9b2cbf1d/41467_2023_43465_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10673925/fda0b43fcc5f/41467_2023_43465_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab70/10673925/51f2a9d40606/41467_2023_43465_Fig8_HTML.jpg

相似文献

[1]
Nanoparticles exhibiting virus-mimic surface topology for enhanced oral delivery.

Nat Commun. 2023-11-24

[2]
Chiral Nanosilica Drug Delivery Systems Stereoselectively Interacted with the Intestinal Mucosa to Improve the Oral Adsorption of Insoluble Drugs.

ACS Nano. 2023-2-28

[3]
Superiority of amino-modified chiral mesoporous silica nanoparticles in delivering indometacin.

Artif Cells Nanomed Biotechnol. 2017-8-4

[4]
The On-Off chiral mesoporous silica nanoparticles for delivering achiral drug in chiral environment.

Colloids Surf B Biointerfaces. 2018-12-26

[5]
Carboxyl-functionalized mesoporous silica nanoparticles for the controlled delivery of poorly water-soluble non-steroidal anti-inflammatory drugs.

Acta Biomater. 2021-10-15

[6]
Multichiral Mesoporous Silica Screws with Chiral Differential Mucus Penetration and Mucosal Adhesion for Oral Drug Delivery.

ACS Nano. 2024-6-25

[7]
Enantioselective Oral Absorption of Molecular Chiral Mesoporous Silica Nanoparticles.

Adv Mater. 2023-12

[8]
Chiral mesoporous silica nano-screws as an efficient biomimetic oral drug delivery platform through multiple topological mechanisms.

Acta Pharm Sin B. 2022-3

[9]
Ordered nanoporous silica as carriers for improved delivery of water insoluble drugs: a comparative study between three dimensional and two dimensional macroporous silica.

Int J Nanomedicine. 2013-10-22

[10]
Enlarged Pore Size Chiral Mesoporous Silica Nanoparticles Loaded Poorly Water-Soluble Drug Perform Superior Delivery Effect.

Molecules. 2019-9-30

引用本文的文献

[1]
Applications of Tailored Mesoporous Silicate Nanomaterials in Regenerative Medicine and Theranostics.

Int J Mol Sci. 2025-8-16

[2]
Programmable self-replicating JEV nanotherapeutics redefine RNA delivery in ALS.

Commun Biol. 2025-8-26

[3]
Nanomedicines for the treatment of genitourinary neoplasms.

Mater Today Bio. 2025-8-3

[4]
Functionalization of Silica Nanoparticles for Tailored Interactions with Intestinal Cells and Chemical Modulation of Paracellular Permeability.

Small Sci. 2024-8-1

[5]
Drug delivery systems based on mesoporous silica nanoparticles for the management of hepatic diseases.

Acta Pharm Sin B. 2025-2

[6]
Intestinal nanoparticle delivery and cellular response: a review of the bidirectional nanoparticle-cell interplay in mucosa based on physiochemical properties.

J Nanobiotechnology. 2024-11-1

[7]
Biomembrane-Modified Biomimetic Nanodrug Delivery Systems: Frontier Platforms for Cardiovascular Disease Treatment.

Biomolecules. 2024-8-7

[8]
Artificial Bacteriophages for Treating Oral Infectious Disease via Localized Bacterial Capture and Enhanced Catalytic Sterilization.

Adv Sci (Weinh). 2024-11

[9]
Unraveling dynamics of paramyxovirus-receptor interactions using nanoparticles displaying hemagglutinin-neuraminidase.

PLoS Pathog. 2024-7

本文引用的文献

[1]
Oral nano-formulation improves pancreatic islets dysfunction lymphatic transport for antidiabetic treatment.

Acta Pharm Sin B. 2023-7

[2]
Mechanisms of Nanoparticle Transport across Intestinal Tissue: An Oral Delivery Perspective.

ACS Nano. 2023-7-25

[3]
Intestinal mucus components and secretion mechanisms: what we do and do not know.

Exp Mol Med. 2023-4

[4]
Chiral Nanosilica Drug Delivery Systems Stereoselectively Interacted with the Intestinal Mucosa to Improve the Oral Adsorption of Insoluble Drugs.

ACS Nano. 2023-2-28

[5]
Quantitative Evaluation of the Cellular Uptake of Nanodiamonds by Monocytes and Macrophages.

Small. 2023-3

[6]
Mucus-penetrating dendritic mesoporous silica nanoparticle loading drug nanocrystal clusters to enhance permeation and intestinal absorption.

Biomater Sci. 2023-1-31

[7]
Adenovirus vector system: construction, history and therapeutic applications.

Biotechniques. 2022-12

[8]
A proposed mathematical description of in vivo nanoparticle delivery.

Adv Drug Deliv Rev. 2022-10

[9]
Intranasal Delivery of BACE1 siRNA and Rapamycin by Dual Targets Modified Nanoparticles for Alzheimer's Disease Therapy.

Small. 2022-7

[10]
pH-Activatable Organic Nanoparticles for Efficient Low-Temperature Photothermal Therapy of Ocular Bacterial Infection.

ACS Nano. 2022-7-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索