Suppr超能文献

突破壁垒:针对动态紧密连接的新型靶向方法以改善药物递送。

Storming the gate: New approaches for targeting the dynamic tight junction for improved drug delivery.

机构信息

McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States.

McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States.

出版信息

Adv Drug Deliv Rev. 2023 Aug;199:114905. doi: 10.1016/j.addr.2023.114905. Epub 2023 Jun 3.

Abstract

As biologics used in the clinic outpace the number of new small molecule drugs, an important challenge for their efficacy and widespread use has emerged, namely tissue penetrance. Macromolecular drugs - bulky, high-molecular weight, hydrophilic agents - exhibit low permeability across biological barriers. Epithelial and endothelial layers, for example within the gastrointestinal tract or at the blood-brain barrier, present the most significant obstacle to drug transport. Within epithelium, two subcellular structures are responsible for limiting absorption: cell membranes and intercellular tight junctions. Previously considered impenetrable to macromolecular drugs, tight junctions control paracellular flux and dictate drug transport between cells. Recent work, however, has shown tight junctions to be dynamic, anisotropic structures that can be targeted for delivery. This review aims to summarize new approaches for targeting tight junctions, both directly and indirectly, and to highlight how manipulation of tight junction interactions may help usher in a new era of precision drug delivery.

摘要

随着临床上使用的生物制剂超过新小分子药物的数量,它们的疗效和广泛应用面临着一个重要的挑战,即组织穿透力。大分子药物——体积大、分子量高、亲水性药物——在生物屏障中的通透性较低。例如,在胃肠道或血脑屏障内的上皮和内皮层,是药物运输的最大障碍。在上皮内,两个亚细胞结构负责限制吸收:细胞膜和细胞间紧密连接。以前被认为对大分子药物不可渗透的紧密连接控制着细胞旁通量,并决定药物在细胞间的运输。然而,最近的研究表明,紧密连接是动态的、各向异性的结构,可以作为药物输送的靶点。这篇综述旨在总结直接和间接靶向紧密连接的新方法,并强调紧密连接相互作用的操纵如何有助于迎来精准药物输送的新时代。

相似文献

1
Storming the gate: New approaches for targeting the dynamic tight junction for improved drug delivery.
Adv Drug Deliv Rev. 2023 Aug;199:114905. doi: 10.1016/j.addr.2023.114905. Epub 2023 Jun 3.
2
Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery.
Biochim Biophys Acta. 2009 Apr;1788(4):892-910. doi: 10.1016/j.bbamem.2008.09.016. Epub 2008 Oct 17.
3
Paracellular drug absorption enhancement through tight junction modulation.
Expert Opin Drug Deliv. 2013 Jan;10(1):103-14. doi: 10.1517/17425247.2013.745509. Epub 2012 Nov 20.
8
Structure and function of the intercellular junctions: barrier of paracellular drug delivery.
Curr Pharm Des. 2006;12(22):2813-24. doi: 10.2174/138161206777947722.
9
Nanostructure-Mediated Transport of Therapeutics through Epithelial Barriers.
Int J Mol Sci. 2024 Jun 28;25(13):7098. doi: 10.3390/ijms25137098.
10
Paracellular drug transport across intestinal epithelia: influence of charge and induced water flux.
Eur J Pharm Sci. 1999 Oct;9(1):47-56. doi: 10.1016/s0928-0987(99)00041-x.

引用本文的文献

1
Type 2 Diabetes and the Multifaceted Gut-X Axes.
Nutrients. 2025 Aug 21;17(16):2708. doi: 10.3390/nu17162708.
2
Co-Encapsulation of Multiple Antineoplastic Agents in Liposomes by Exploring Microfluidics.
Int J Mol Sci. 2025 Apr 17;26(8):3820. doi: 10.3390/ijms26083820.
4
Nanotechnology to Overcome Blood-Brain Barrier Permeability and Damage in Neurodegenerative Diseases.
Pharmaceutics. 2025 Feb 20;17(3):281. doi: 10.3390/pharmaceutics17030281.
5
Trans-Mediated, Cis-Inhibited Paradoxal Activity of Enterotoxin (c-CPE) in Modulating Epithelial Permeability.
Mol Pharm. 2025 Apr 7;22(4):1973-1982. doi: 10.1021/acs.molpharmaceut.4c01205. Epub 2025 Mar 11.
6
Device-assisted strategies for drug delivery across the blood-brain barrier to treat glioblastoma.
Commun Mater. 2025;6(1):5. doi: 10.1038/s43246-024-00721-y. Epub 2025 Jan 7.
7
Strategies for intravesical drug delivery: From bladder physiological barriers and potential transport mechanisms.
Acta Pharm Sin B. 2024 Nov;14(11):4738-4755. doi: 10.1016/j.apsb.2024.07.003. Epub 2024 Jul 6.
9
Paracellular Delivery of Protein Drugs with Smart EnteroPatho Nanoparticles.
ACS Nano. 2024 Aug 13;18(32):21038-21051. doi: 10.1021/acsnano.4c02116. Epub 2024 Aug 3.
10
Nanostructure-Mediated Transport of Therapeutics through Epithelial Barriers.
Int J Mol Sci. 2024 Jun 28;25(13):7098. doi: 10.3390/ijms25137098.

本文引用的文献

1
P-selectin-targeted nanocarriers induce active crossing of the blood-brain barrier via caveolin-1-dependent transcytosis.
Nat Mater. 2023 Mar;22(3):391-399. doi: 10.1038/s41563-023-01481-9. Epub 2023 Mar 2.
2
Cholesterol-rich domain formation mediated by ZO proteins is essential for tight junction formation.
Proc Natl Acad Sci U S A. 2023 Feb 21;120(8):e2217561120. doi: 10.1073/pnas.2217561120. Epub 2023 Feb 15.
3
Long-term daily oral administration of intestinal permeation enhancers is safe and effective in mice.
Bioeng Transl Med. 2022 May 31;8(1):e10342. doi: 10.1002/btm2.10342. eCollection 2023 Jan.
4
2022 FDA approvals.
Nat Rev Drug Discov. 2023 Feb;22(2):83-88. doi: 10.1038/d41573-023-00001-3.
6
Impact of peptide permeation enhancer on tight junctions opening cellular mechanisms.
Biochem Biophys Rep. 2022 Oct 27;32:101375. doi: 10.1016/j.bbrep.2022.101375. eCollection 2022 Dec.
7
How Nanoparticles Open the Paracellular Route of Biological Barriers: Mechanisms, Applications, and Prospects.
ACS Nano. 2022 Oct 25;16(10):15627-15652. doi: 10.1021/acsnano.2c05317. Epub 2022 Sep 19.
8
Nanoscale segregation of channel and barrier claudins enables paracellular ion flux.
Nat Commun. 2022 Aug 25;13(1):4985. doi: 10.1038/s41467-022-32533-4.
9
The strawberry-derived permeation enhancer pelargonidin enables oral protein delivery.
Proc Natl Acad Sci U S A. 2022 Aug 16;119(33):e2207829119. doi: 10.1073/pnas.2207829119. Epub 2022 Aug 9.
10
Tight junction channel regulation by interclaudin interference.
Nat Commun. 2022 Jun 30;13(1):3780. doi: 10.1038/s41467-022-31587-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验