Cui Yanglansen, Cao Zhenjiang, Zhang Yongzheng, Chen Hao, Gu Jianan, Du Zhiguo, Shi Yongzheng, Li Bin, Yang Shubin
School of Materials Science and Engineering Beihang University 100191 Beijing China.
Small Sci. 2021 May 7;1(6):2100017. doi: 10.1002/smsc.202100017. eCollection 2021 Jun.
Single-atom sites on MXenes (SASs-MXenes) have attracted widespread attention for energy storage and conversion due to their highest atom utilization efficiency, intriguing intrinsic properties, unusual performance, and improved robustness. In addition, the large surface area and abundant anchor sites make MXenes ideal substrates for supporting single atoms via covalent interaction. Herein, the main strategies for synthesis of SASs-MXenes are first summarized, which cover capturing single atoms by cation vacancies, coordinating single atoms with heterodopants, and inheriting single atoms from MAX phases. Then, disclosing the crucial roles SASs-MXenes play in tuning the kinetics and thermodynamics of various catalytic reactions, i.e., hydrogen evolution reaction, nitrogen reduction reaction, CO reduction reaction, CO functionalization, polysulfide conversion, and other redox reactions involved in rechargeable batteries, is focused on. Finally, the challenges and future opportunities for developing highly active SASs-MXenes are discussed.
MXenes上的单原子位点(SASs-MXenes)因其最高的原子利用效率、引人入胜的本征特性、非凡的性能以及增强的稳定性,在能量存储和转换领域引起了广泛关注。此外,大的表面积和丰富的锚定位点使MXenes成为通过共价相互作用支撑单原子的理想基底。在此,首先总结了合成SASs-MXenes的主要策略,包括通过阳离子空位捕获单原子、使单原子与杂原子掺杂剂配位以及从MAX相继承单原子。然后,重点阐述了SASs-MXenes在调节各种催化反应(即析氢反应、氮还原反应、CO还原反应、CO官能化、多硫化物转化以及可充电电池中涉及的其他氧化还原反应)的动力学和热力学方面所起的关键作用。最后,讨论了开发高活性SASs-MXenes面临的挑战和未来机遇。