Liu Jinjun, Li Shaoqi, Alhusaini Naji, Li Wei, Zhao Liang, He Pengfei
Chuzhou University, 1528 Feng Le Avenue, Chuzhou, Anhui, China.
Anhui University, 111 Kowloon Road, Hefei, Anhui, China.
Data Brief. 2025 Mar 15;60:111471. doi: 10.1016/j.dib.2025.111471. eCollection 2025 Jun.
In recent years, millimeter-wave radar technology has been widely used for non-invasive recognition and tracking of sleep postures due to its advantages of high accuracy, contactless operation, and ability to penetrate clothing. In order to promote the development of this field and to address the lack of large-scale, high-quality sleep posture transition datasets, this paper proposes a publicly available millimeter-wave sleep posture transition dataset. The dataset contains 20 volunteers (15 males and 5 females) aged between 19 and 25 years, with heights ranging from 1.55 m to 1.80 m and weights between 45 kg and 90 kg. Each participant performed seven different body position transitionmaneuvers in a preset order, yielding a total of 1400 samples. During the experiment, participants' postural changes were captured by a millimeter-wave radar system mounted on the side of the bed. This dataset provides valuable support for the optimization of sleep posture recognition algorithms, analysis of nocturnal behavioral patterns, and health monitoring.
近年来,毫米波雷达技术因其具有高精度、非接触式操作以及能够穿透衣物等优点,已被广泛用于睡眠姿势的无创识别和跟踪。为了推动该领域的发展,并解决缺乏大规模、高质量睡眠姿势转换数据集的问题,本文提出了一个公开可用的毫米波睡眠姿势转换数据集。该数据集包含20名年龄在19至25岁之间的志愿者(15名男性和5名女性),身高在1.55米至1.80米之间,体重在45千克至90千克之间。每位参与者按照预设顺序进行了七种不同的身体姿势转换动作,总共产生了1400个样本。在实验过程中,参与者的姿势变化由安装在床边的毫米波雷达系统进行捕捉。该数据集为睡眠姿势识别算法的优化、夜间行为模式分析以及健康监测提供了有价值的支持。
Data Brief. 2025-3-15
Sensors (Basel). 2024-9-11
Sensors (Basel). 2023-11-27
IEEE J Biomed Health Inform. 2021-4
Sensors (Basel). 2020-11-14
Sensors (Basel). 2019-9-12
Sensors (Basel). 2024-6-21
Front Hum Neurosci. 2023-4-13
J Clin Sleep Med. 2021-10-1
Curr Sleep Med Rep. 2019
IEEE J Biomed Health Inform. 2021-4
Sleep Med. 2021-1
IEEE Rev Biomed Eng. 2019-7-5
Sleep Health. 2018-6-27