文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于毫米波雷达的睡眠姿势转换数据集:SPT

Millimeter-wave radar based sleep posture transition dataset: SPT.

作者信息

Liu Jinjun, Li Shaoqi, Alhusaini Naji, Li Wei, Zhao Liang, He Pengfei

机构信息

Chuzhou University, 1528 Feng Le Avenue, Chuzhou, Anhui, China.

Anhui University, 111 Kowloon Road, Hefei, Anhui, China.

出版信息

Data Brief. 2025 Mar 15;60:111471. doi: 10.1016/j.dib.2025.111471. eCollection 2025 Jun.


DOI:10.1016/j.dib.2025.111471
PMID:40213044
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11985057/
Abstract

In recent years, millimeter-wave radar technology has been widely used for non-invasive recognition and tracking of sleep postures due to its advantages of high accuracy, contactless operation, and ability to penetrate clothing. In order to promote the development of this field and to address the lack of large-scale, high-quality sleep posture transition datasets, this paper proposes a publicly available millimeter-wave sleep posture transition dataset. The dataset contains 20 volunteers (15 males and 5 females) aged between 19 and 25 years, with heights ranging from 1.55 m to 1.80 m and weights between 45 kg and 90 kg. Each participant performed seven different body position transitionmaneuvers in a preset order, yielding a total of 1400 samples. During the experiment, participants' postural changes were captured by a millimeter-wave radar system mounted on the side of the bed. This dataset provides valuable support for the optimization of sleep posture recognition algorithms, analysis of nocturnal behavioral patterns, and health monitoring.

摘要

近年来,毫米波雷达技术因其具有高精度、非接触式操作以及能够穿透衣物等优点,已被广泛用于睡眠姿势的无创识别和跟踪。为了推动该领域的发展,并解决缺乏大规模、高质量睡眠姿势转换数据集的问题,本文提出了一个公开可用的毫米波睡眠姿势转换数据集。该数据集包含20名年龄在19至25岁之间的志愿者(15名男性和5名女性),身高在1.55米至1.80米之间,体重在45千克至90千克之间。每位参与者按照预设顺序进行了七种不同的身体姿势转换动作,总共产生了1400个样本。在实验过程中,参与者的姿势变化由安装在床边的毫米波雷达系统进行捕捉。该数据集为睡眠姿势识别算法的优化、夜间行为模式分析以及健康监测提供了有价值的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ff/11985057/399f4d430d12/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ff/11985057/839d662911be/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ff/11985057/904c333eb5be/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ff/11985057/67617c5ca89b/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ff/11985057/dcbe4081b367/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ff/11985057/6a1c94713f53/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ff/11985057/2ace9015e586/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ff/11985057/2a87842e3502/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ff/11985057/05705331b1da/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ff/11985057/399f4d430d12/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ff/11985057/839d662911be/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ff/11985057/904c333eb5be/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ff/11985057/67617c5ca89b/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ff/11985057/dcbe4081b367/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ff/11985057/6a1c94713f53/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ff/11985057/2ace9015e586/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ff/11985057/2a87842e3502/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ff/11985057/05705331b1da/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ff/11985057/399f4d430d12/gr9.jpg

相似文献

[1]
Millimeter-wave radar based sleep posture transition dataset: SPT.

Data Brief. 2025-3-15

[2]
A Deep Learning Method for Human Sleeping Pose Estimation with Millimeter Wave Radar.

Sensors (Basel). 2024-9-11

[3]
Human Movement Recognition Based on 3D Point Cloud Spatiotemporal Information from Millimeter-Wave Radar.

Sensors (Basel). 2023-11-27

[4]
PGGait: Gait Recognition Based on Millimeter-Wave Radar Spatio-Temporal Sensing of Multidimensional Point Clouds.

Sensors (Basel). 2023-12-27

[5]
SleepPoseNet: Multi-View Learning for Sleep Postural Transition Recognition Using UWB.

IEEE J Biomed Health Inform. 2021-4

[6]
Multitarget-Tracking Method Based on the Fusion of Millimeter-Wave Radar and LiDAR Sensor Information for Autonomous Vehicles.

Sensors (Basel). 2023-8-3

[7]
Vision Transformers (ViT) for Blanket-Penetrating Sleep Posture Recognition Using a Triple Ultra-Wideband (UWB) Radar System.

Sensors (Basel). 2023-2-23

[8]
Vital Sign Monitoring Using FMCW Radar in Various Sleeping Scenarios.

Sensors (Basel). 2020-11-14

[9]
The Role of Millimeter-Waves in the Distance Measurement Accuracy of an FMCW Radar Sensor.

Sensors (Basel). 2019-9-12

[10]
Millimeter-Wave Radar-Based Identity Recognition Algorithm Built on Multimodal Fusion.

Sensors (Basel). 2024-6-21

本文引用的文献

[1]
Detrimental effects of sleep deprivation on the regulatory mechanisms of postural balance: a comprehensive review.

Front Hum Neurosci. 2023-4-13

[2]
The association between objective measurements of sleep quality and postural control in adults: A systematic review.

Sleep Med Rev. 2022-6

[3]
Sleep is essential to health: an American Academy of Sleep Medicine position statement.

J Clin Sleep Med. 2021-10-1

[4]
Sleep tracking: A systematic review of the research using commercially available technology.

Curr Sleep Med Rep. 2019

[5]
SleepPoseNet: Multi-View Learning for Sleep Postural Transition Recognition Using UWB.

IEEE J Biomed Health Inform. 2021-4

[6]
Sleep deprivation and its association with diseases- a review.

Sleep Med. 2021-1

[7]
Pressure Injury Prevention: A Survey.

IEEE Rev Biomed Eng. 2019-7-5

[8]
Rethinking the sleep-health link.

Sleep Health. 2018-6-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索