Suppr超能文献

用于卤化物钙钛矿室内光伏的金属氧化物与有机半导体电荷提取层

Metal Oxide vs Organic Semiconductor Charge Extraction Layers for Halide Perovskite Indoor Photovoltaics.

作者信息

Wang Shaoyang, Kodalle Tim, Millar Sam, Sutter-Fella Carolin M, Krishnan Jagadamma Lethy

机构信息

Energy Harvesting Research Group, School of Physics & Astronomy, SUPA University of St Andrews North Haugh, St Andrews Fife KY16 9SS UK.

Molecular Foundry Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA.

出版信息

Small Sci. 2024 Sep 10;4(12):2400292. doi: 10.1002/smsc.202400292. eCollection 2024 Dec.

Abstract

Halide perovskite indoor photovoltaics (PVs) are highly promising to autonomously power the billions of microelectronic sensors in the emerging and disruptive technology of the Internet of Things (IoT). However, how the wide range of different types of hole extraction layers (HELs) impacts the indoor light harvesting of perovskite solar cells is still elusive, which hinders the material selection and industrial-scale fabrication of indoor perovskite photovoltaics. In the present study, new insights are provided regarding the judicial selection of HELs at the buried interface of halide perovskite indoor photovoltaics. This study unravels the detrimental and severe light-soaking effect of metal oxide transport layer-based PV devices under the indoor lighting effect for the first time, which then necessitates the interface passivation/engineering for their reliant performance. This is not a stringent criterion under 1 sun illumination. By systematically investigating the charge carrier dynamics and sequence of measurements from dark, light-soaked, interlayer-passivated device, the bulk and interface defects are decoupled and reveal the gradual defect passivation from shallow to deep level traps. Thus, the present study puts forward a useful design strategy to overcome the deleterious effect of metal oxide HELs and employ them in halide perovskite indoor PVs.

摘要

卤化物钙钛矿室内光伏器件(PVs)极有希望为物联网(IoT)这一新兴且颠覆性技术中的数十亿个微电子传感器自主供电。然而,不同类型的空穴提取层(HELs)种类繁多,它们如何影响钙钛矿太阳能电池的室内光捕获仍不清楚,这阻碍了室内钙钛矿光伏器件的材料选择和工业规模制造。在本研究中,我们对于卤化物钙钛矿室内光伏器件掩埋界面处空穴提取层的合理选择有了新的认识。本研究首次揭示了基于金属氧化物传输层的光伏器件在室内光照条件下有害且严重的光浸泡效应,因此需要对其依赖的性能进行界面钝化/工程处理。在1个太阳光照下,这并非严格的标准。通过系统地研究电荷载流子动力学以及从黑暗、光浸泡、层间钝化器件进行测量的顺序,体缺陷和界面缺陷得以解耦,并揭示了从浅到深能级陷阱的逐步缺陷钝化过程。因此,本研究提出了一种有用的设计策略,以克服金属氧化物空穴提取层的有害影响,并将其应用于卤化物钙钛矿室内光伏器件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad61/11935188/c00223a5fbe7/SMSC-4-2400292-g009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验