Suppr超能文献

黑素皮质素-1受体表达作为黑色素瘤患者术后预后的预测因素:一项回顾性研究。

Melanocortin-1 receptor expression as a predictive factor for postoperative outcomes in melanoma patients: a retrospective study.

作者信息

Xiang Tian, Li Haiying, Wang Xiaowei, Su Danke

机构信息

Department of Radiology, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, Guangxi, China.

Department of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.

出版信息

Front Immunol. 2025 Mar 27;16:1570502. doi: 10.3389/fimmu.2025.1570502. eCollection 2025.

Abstract

BACKGROUND AND OBJECTIVE

This study aims to explore the relationship between melanocortin-1 receptor (MC1R) expression levels and clinical pathological parameters of melanoma, as well as its potential as a prognostic biomarker.

METHODS

This retrospective study included 99 melanoma patients in our hospital from June 2017 to July 2023. MC1R expression was assessed by immunohistochemistry assays. Histochemistry score (H-score) determined the level of MC1R immunohistochemistry expression in melanoma. The relationships among MC1R expression, clinical pathological parameters in melanoma patients were assessed using Chi-square and Fisher's precision probability tests. Kaplan-Meier assay and log-rank test were utilized to estimate survival curves. Potential independent factors among the enrolled patients were investigated using COX regression analysis.

RESULTS

According to median value of H-score, 38 cases with low MC1R expression and 61 cases with high MC1R expression in melanoma tumor tissues were observed. Patients with high MC1R expression in melanoma tissues exhibited a worse prognosis compared to patients with low MC1R expression. The survival time difference was statistically significant [MC1R expression in melanoma tumor tissue (MC1RT): median DFS, 12.83 vs. 17.53 months, χ2 = 5.395, P=0.0202; median OS, 16.47 vs. 21.77 months, χ2 = 5.082, P=0.0243. MC1R expression in normal adjacent to melanoma tissue (MC1RN): median DFS, 12.03 vs. 14.29 months, χ2 = 6.864, P=0.0088; median OS, 16.73 vs. 21.77 months, χ2 = 5.649, P=0.0175]. Multivariate COX regression model analysis indicated that MC1RN, MC1RT, sex, ESR, tumor site, targeted therapy, and immunotherapy were potential prognostic factors for the DFS. Furthermore, MC1RN, MC1RT, sex, tumor site, TLN, PLN, and immunotherapy were potential prognostic factors for the OS. Calibration curve indicated the predicted probabilities of nomogram models were in accordance with the actual probabilities, and the prediction accuracy was relatively high at one year and three years following surgery. The decision clinical curve revealed that the nomogram models had better predictive performance for DFS and OS than the MC1RT or MC1RN thresholds.

CONCLUSIONS

Low MC1R expression in melanoma tumor tissues and adjacent normal tissue might be beneficial for the prognosis of melanoma patients. MC1R was a predictive factor for the prognosis of melanoma patients. Nomogram models based on MC1R demonstrated good prediction ability.

摘要

背景与目的

本研究旨在探讨黑素皮质素-1受体(MC1R)表达水平与黑色素瘤临床病理参数之间的关系,以及其作为预后生物标志物的潜力。

方法

本回顾性研究纳入了2017年6月至2023年7月我院的99例黑色素瘤患者。通过免疫组织化学检测评估MC1R表达。组织化学评分(H评分)确定黑色素瘤中MC1R免疫组织化学表达水平。采用卡方检验和Fisher精确概率检验评估黑色素瘤患者MC1R表达与临床病理参数之间的关系。利用Kaplan-Meier法和对数秩检验估计生存曲线。采用COX回归分析研究纳入患者中的潜在独立因素。

结果

根据H评分中位数,观察到黑色素瘤肿瘤组织中38例MC1R低表达和61例MC1R高表达。与MC1R低表达患者相比,黑色素瘤组织中MC1R高表达患者的预后更差。生存时间差异具有统计学意义[黑色素瘤肿瘤组织中MC1R表达(MC1RT):中位无病生存期,12.83个月对17.53个月,χ2 = 5.395,P = 0.0202;中位总生存期,16.47个月对21.77个月,χ2 = 5.082,P = 0.0243。黑色素瘤相邻正常组织中MC1R表达(MC1RN):中位无病生存期,12.03个月对14.29个月,χ2 = 6.864,P = 0.0088;中位总生存期,16.73个月对21.77个月,χ2 = 5.649,P = 0.0175]。多因素COX回归模型分析表明,MC1RN、MC1RT、性别、红细胞沉降率、肿瘤部位、靶向治疗和免疫治疗是无病生存期的潜在预后因素。此外,MC1RN、MC1RT、性别、肿瘤部位、区域淋巴结、阳性淋巴结和免疫治疗是总生存期的潜在预后因素。校准曲线表明列线图模型的预测概率与实际概率相符,术后1年和3年的预测准确性相对较高。决策临床曲线显示,列线图模型对无病生存期和总生存期的预测性能优于MC1RT或MC1RN阈值。

结论

黑色素瘤肿瘤组织及相邻正常组织中MC1R低表达可能有利于黑色素瘤患者的预后。MC1R是黑色素瘤患者预后的预测因素。基于MC1R的列线图模型具有良好的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8b8/11983465/508461e66df4/fimmu-16-1570502-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验