Suppr超能文献

长期使用聊天机器人系统对医疗专业人员职业身份形成和压力的影响:一项小规模比较研究。

Effects of Long-Term Chatbot System Use on Healthcare Professionals' Professional Identity Formation and Stress: A Small-Scale Comparative Study.

作者信息

Harada Yuusuke

机构信息

Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, JPN.

Graduate School of Medicine, Chiba University, Chiba, JPN.

出版信息

Cureus. 2025 Mar 10;17(3):e80373. doi: 10.7759/cureus.80373. eCollection 2025 Mar.

Abstract

Background Digital mental health interventions, including chatbot systems, are increasingly recognized for their potential to address mental health challenges among healthcare professionals. In particular, reflective practices facilitated by chatbots may support identity development and alleviate stress. However, the long-term effects of such interventions remain underexplored. Objective This study investigated the effects of a chatbot system using the line chart method over approximately nine months on the professional identity development and stress levels of healthcare professionals in Japan. Methods Professional identity formation specifically refers to how healthcare professionals perceive, develop, and integrate their professional roles and responsibilities into their self-concept. To evaluate this construct and associated stress levels, a parallel-group design was employed, in which eight participants (nurses and physical therapists) were randomly allocated to either a system-use group (Group A) or a non-use group (Group B). Both groups were followed for nine months, with periodic assessments conducted before and after the intervention, as well as after a washout period. The Japanese version of the Dimensions of Identity Development Scale (DIDS-J), assessing Commitment Formation, Identification with Commitment, Broad Exploration, Deep Exploration, and Ruminative Exploration, and the Public Health Research Foundation Stress Checklist Short Form (PHRF-SCL), evaluating Anxiety/Uncertainty, Fatigue/Physical Responses, Autonomic Symptoms, and Depressive Mood/Inadequacy, were administered. Results In the between-group comparisons, Group A demonstrated statistically significant improvements compared to Group B in the DIDS-J subscales, including Commitment Formation (16.5±0.6 vs. 14.0±0.8), Identification with Commitment (16.5±0.6 vs. 14.3±1.0), Broad Exploration (18.0±0.8 vs. 15.0±0.8), and Deep Exploration (18.0±1.1 vs. 14.5±1.3). Additionally, significant improvements were observed in the PHRF-SCL subscales, specifically Anxiety/Uncertainty (5.5±1.3 vs. 7.5±0.6), Fatigue/Physical Responses (4.5±0.6 vs. 7.8±1.3), and Depressive Mood/Inadequacy (4.5±1.3 vs. 9.3±0.6). Conclusion The results suggest that long-term use of a chatbot system employing reflective methods may promote professional identity development and reduce certain stress responses in healthcare professionals. Nonetheless, sample size limitations, pre-existing group differences, and environmental variables constrain the interpretation of findings. Future research with larger and more diverse populations, extended follow-up periods, and additional physiological or life-event measures is warranted to validate and refine these preliminary outcomes.

摘要

背景 包括聊天机器人系统在内的数字心理健康干预措施,因其在应对医疗保健专业人员心理健康挑战方面的潜力而日益受到认可。特别是,聊天机器人所促进的反思性实践可能有助于身份认同的发展并减轻压力。然而,此类干预措施的长期效果仍未得到充分探索。目的 本研究调查了一种使用折线图方法的聊天机器人系统在大约九个月的时间里对日本医疗保健专业人员的职业身份发展和压力水平的影响。方法 职业身份形成具体是指医疗保健专业人员如何将其职业角色和责任感知、发展并融入自我概念。为了评估这一结构以及相关的压力水平,采用了平行组设计,将八名参与者(护士和物理治疗师)随机分配到系统使用组(A组)或非使用组(B组)。两组均随访九个月,在干预前后以及洗脱期后进行定期评估。使用了日语版的身份发展维度量表(DIDS-J),用于评估承诺形成、对承诺的认同、广泛探索、深入探索和反思性探索,以及公共卫生研究基金会压力清单简表(PHRF-SCL),用于评估焦虑/不确定性、疲劳/身体反应、自主症状以及抑郁情绪/不足。结果 在组间比较中,A组在DIDS-J子量表上与B组相比显示出统计学上的显著改善,包括承诺形成(16.5±0.6对14.0±0.8)、对承诺的认同(16.5±0.6对14.3±1.0)、广泛探索(18.0±0.8对15.0±0.8)和深入探索(18.0±1.1对14.5±1.3)。此外,在PHRF-SCL子量表上也观察到了显著改善,特别是焦虑/不确定性(5.5±1.3对7.5±0.6)、疲劳/身体反应(4.5±0.6对7.8±1.3)以及抑郁情绪/不足(4.5±1.3对9.3±0.6)。结论 结果表明,长期使用采用反思方法的聊天机器人系统可能会促进医疗保健专业人员的职业身份发展并减少某些压力反应。尽管如此,样本量的限制、预先存在的组间差异以及环境变量限制了研究结果的解释。未来有必要开展更大规模、更多样化人群、更长随访期以及增加生理或生活事件测量的研究,以验证和完善这些初步结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ad3/11984021/b37f0843749d/cureus-0017-00000080373-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验