Zhang Yanxu, Yu Kexin, Zhao Jin, Xu Shuaiqi, Lv Mengqi, Zhao Qiuling, Du Xue, Wang Maorong, Wang Xia
Shandong Engineering Research Center of New Optoelectronic Information Technology and Devices, School of Mathematics and Physics, Qingdao University of Science & Technology, Qingdao 266061, China.
School of Physics and Technology, University of Jinan, Jinan 250022, China.
Nanomaterials (Basel). 2025 Mar 30;15(7):522. doi: 10.3390/nano15070522.
Colloidal copper-based chalcogenide quantum dots (QDs), particularly lead-free CuInSe systems, have emerged as promising photosensitizers for optoelectronic de-vices due to their high extinction coefficients and solution processability. In this work, we demonstrate a TiO photodetector enhanced through interfacial engineering with the size of 9.88 ± 2.49 nm CuInSe QD, synthesized via controlled thermal injection. The optimized device architecture combines a 160 nm TiO active layer with 60 μm horizontal channel electrodes, achieving high performance metrics. The QD-sensitized device demonstrates an impressive switching ratio of approximately 10 in the 405 nm wavelength, a significant 34-times increase in responsivity at a 2 V bias, and a detection rate of 4.17 × 10 Jones. Due to the limitations imposed by the TiO bandgap, the TiO photodetector exhibits a negligible increase in photocurrent at 565 nm. The engineered type-II heterostructure enables responsivity enhancement across an extended spectral range through sensitization while maintaining equivalent performance characteristics at both 405 nm and 565 nm wavelengths. Furthermore, the sensitized architecture demonstrates superior response kinetics, enhanced specific detectivity, and exceptional operational stability, establishing a universal design framework for broadband photodetection systems.
基于胶体铜的硫族化物量子点(QDs),特别是无铅CuInSe体系,由于其高消光系数和溶液可加工性,已成为光电器件中有前景的光敏剂。在这项工作中,我们展示了一种通过界面工程增强的TiO光电探测器,其采用通过控制热注入合成的尺寸为9.88±2.49 nm的CuInSe量子点。优化后的器件结构将160 nm的TiO有源层与60μm的水平沟道电极相结合,实现了高性能指标。量子点敏化器件在405 nm波长下表现出约10的令人印象深刻的开关比,在2 V偏压下响应度显著提高34倍,探测率为4.17×10琼斯。由于TiO带隙的限制,TiO光电探测器在565 nm处的光电流增加可忽略不计。工程化的II型异质结构通过敏化在扩展光谱范围内实现响应度增强,同时在405 nm和565 nm波长下保持等效的性能特征。此外,敏化结构表现出优异的响应动力学、增强的比探测率和出色的操作稳定性,为宽带光电探测系统建立了通用设计框架。