Suppr超能文献

利用弱监督和元学习改进渔场估计。

Improving fishing ground estimation with weak supervision and meta-learning.

作者信息

Takasan Kazuki, Iiyama Masaaki

机构信息

Graduate School of Data Science, Shiga University, Hikone, Shiga, Japan.

出版信息

PLoS One. 2025 Apr 11;20(4):e0321116. doi: 10.1371/journal.pone.0321116. eCollection 2025.

Abstract

Estimating fishing grounds is an important task in the fishing industry. This study modeled the fisher's decision-making process based on sea surface temperature patterns as a pattern recognition task. We used a deep learning-based keypoint detector to estimate fishing ground locations from these patterns. However, training the model required catch data for annotation, the amount of which was limited. To address this, we proposed a training strategy that combines weak supervision and meta-learning to estimate fishing grounds. Weak supervision involves using partially annotated or noisy data, where the labels are incomplete or imprecise. In our case, catch data cover only a subset of fishing grounds, and trajectory data, which are readily available and larger in volume than catch data, provide imprecise representations of fishing grounds. Meta-learning helps the model adapt to the noise by refining its learning rate during training. Our approach involved pre-training with trajectory data and fine-tuning with catch data, with a meta-learner further mitigating label noise during pre-training. Experimental results showed that our method improved the F1-score by 64% compared to the baseline using only catch data, demonstrating the effectiveness of pre-training and meta-learning.

摘要

估算渔场是渔业中的一项重要任务。本研究将渔民的决策过程建模为基于海面温度模式的模式识别任务。我们使用基于深度学习的关键点检测器从这些模式中估算渔场位置。然而,训练模型需要用于标注的渔获数据,而其数量有限。为了解决这个问题,我们提出了一种结合弱监督和元学习来估算渔场的训练策略。弱监督涉及使用部分标注或有噪声的数据,其中标签是不完整或不准确的。在我们的案例中,渔获数据仅覆盖渔场的一个子集,而轨迹数据易于获取且数量比渔获数据大,它提供了渔场的不准确表示。元学习通过在训练期间调整学习率来帮助模型适应噪声。我们的方法包括使用轨迹数据进行预训练并使用渔获数据进行微调,同时一个元学习器在预训练期间进一步减轻标签噪声。实验结果表明,与仅使用渔获数据的基线相比,我们的方法将F1分数提高了64%,证明了预训练和元学习的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e80/11991730/aa2f80cdb085/pone.0321116.g001.jpg

相似文献

1
Improving fishing ground estimation with weak supervision and meta-learning.
PLoS One. 2025 Apr 11;20(4):e0321116. doi: 10.1371/journal.pone.0321116. eCollection 2025.
3
Deep learning-based fishing ground prediction with multiple environmental factors.
Mar Life Sci Technol. 2024 Apr 29;6(4):736-749. doi: 10.1007/s42995-024-00222-4. eCollection 2024 Nov.
4
The northern shrimp (Pandalus borealis) offshore fishery in the Northeast Atlantic.
Adv Mar Biol. 2007;52:147-266. doi: 10.1016/S0065-2881(06)52002-4.
6
[Fishing grounds characteristics of Illex argentinus in southwest Atlantic].
Ying Yong Sheng Tai Xue Bao. 2009 Jun;20(6):1445-51.
8
Language model-based labeling of German thoracic radiology reports.
Rofo. 2025 Jan;197(1):55-64. doi: 10.1055/a-2287-5054. Epub 2024 Apr 25.
10
Determinants of fish catch and post-harvest fish spoilage in small-scale marine fisheries in the Bagamoyo district, Tanzania.
Heliyon. 2022 May 31;8(6):e09574. doi: 10.1016/j.heliyon.2022.e09574. eCollection 2022 Jun.

本文引用的文献

1
Learning From Noisy Labels With Deep Neural Networks: A Survey.
IEEE Trans Neural Netw Learn Syst. 2023 Nov;34(11):8135-8153. doi: 10.1109/TNNLS.2022.3152527. Epub 2023 Oct 27.
2
Weakly Supervised Object Localization and Detection: A Survey.
IEEE Trans Pattern Anal Mach Intell. 2022 Sep;44(9):5866-5885. doi: 10.1109/TPAMI.2021.3074313. Epub 2022 Aug 4.
3
OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields.
IEEE Trans Pattern Anal Mach Intell. 2021 Jan;43(1):172-186. doi: 10.1109/TPAMI.2019.2929257. Epub 2020 Dec 4.
4
Tracking the global footprint of fisheries.
Science. 2018 Feb 23;359(6378):904-908. doi: 10.1126/science.aao5646. Epub 2018 Feb 22.
5
Improving Fishing Pattern Detection from Satellite AIS Using Data Mining and Machine Learning.
PLoS One. 2016 Jul 1;11(7):e0158248. doi: 10.1371/journal.pone.0158248. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验