Suppr超能文献

利用数据挖掘和机器学习改进基于卫星自动识别系统的捕鱼模式检测

Improving Fishing Pattern Detection from Satellite AIS Using Data Mining and Machine Learning.

作者信息

de Souza Erico N, Boerder Kristina, Matwin Stan, Worm Boris

机构信息

Big Data Analytics Institute, Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada.

Biology Department, Dalhousie University, Halifax, NS, Canada.

出版信息

PLoS One. 2016 Jul 1;11(7):e0158248. doi: 10.1371/journal.pone.0158248. eCollection 2016.

Abstract

A key challenge in contemporary ecology and conservation is the accurate tracking of the spatial distribution of various human impacts, such as fishing. While coastal fisheries in national waters are closely monitored in some countries, existing maps of fishing effort elsewhere are fraught with uncertainty, especially in remote areas and the High Seas. Better understanding of the behavior of the global fishing fleets is required in order to prioritize and enforce fisheries management and conservation measures worldwide. Satellite-based Automatic Information Systems (S-AIS) are now commonly installed on most ocean-going vessels and have been proposed as a novel tool to explore the movements of fishing fleets in near real time. Here we present approaches to identify fishing activity from S-AIS data for three dominant fishing gear types: trawl, longline and purse seine. Using a large dataset containing worldwide fishing vessel tracks from 2011-2015, we developed three methods to detect and map fishing activities: for trawlers we produced a Hidden Markov Model (HMM) using vessel speed as observation variable. For longliners we have designed a Data Mining (DM) approach using an algorithm inspired from studies on animal movement. For purse seiners a multi-layered filtering strategy based on vessel speed and operation time was implemented. Validation against expert-labeled datasets showed average detection accuracies of 83% for trawler and longliner, and 97% for purse seiner. Our study represents the first comprehensive approach to detect and identify potential fishing behavior for three major gear types operating on a global scale. We hope that this work will enable new efforts to assess the spatial and temporal distribution of global fishing effort and make global fisheries activities transparent to ocean scientists, managers and the public.

摘要

当代生态学与保护领域的一项关键挑战是准确追踪各种人类活动的空间分布,比如捕鱼活动。虽然一些国家对其领海内的沿海渔业进行了密切监测,但其他地区现有的捕鱼努力地图却充满了不确定性,尤其是在偏远地区和公海。为了在全球范围内确定渔业管理和保护措施的优先次序并加以实施,需要更好地了解全球捕鱼船队的行为。基于卫星的自动识别系统(S - AIS)现在普遍安装在大多数远洋船只上,并已被提议作为一种新型工具来近乎实时地探索捕鱼船队的动向。在此,我们提出了从S - AIS数据中识别三种主要渔具类型(拖网、延绳钓和围网)捕鱼活动的方法。利用一个包含2011 - 2015年全球渔船轨迹的大型数据集,我们开发了三种检测和绘制捕鱼活动的方法:对于拖网渔船,我们以船速作为观测变量构建了一个隐马尔可夫模型(HMM)。对于延绳钓渔船,我们设计了一种数据挖掘(DM)方法,该方法采用了一种受动物运动研究启发的算法。对于围网渔船,实施了一种基于船速和作业时间的多层过滤策略。与专家标注数据集进行的验证表明,拖网渔船和延绳钓渔船的平均检测准确率为83%,围网渔船为97%。我们的研究代表了第一种全面的方法,用于检测和识别在全球范围内作业的三种主要渔具类型的潜在捕鱼行为。我们希望这项工作将推动新的努力,以评估全球捕鱼努力的时空分布,并使全球渔业活动对海洋科学家、管理者和公众透明化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/005c/4930218/ef37bd3015a3/pone.0158248.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验