Isella Benedetta, Sallustio Federica, Acosta Sergio, Andre Dominic, Jockenhövel Stefan, Fernández-Colino Alicia, Rodriguez-Cabello Jose Carlos, Vaughan Ted J, Kopp Alexander
Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland; Fibrothelium GmbH, Philipsstraße 8, 52068 Aachen, Germany.
Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany; Bioforge Lab, University of Valladolid, CIBER-BBN, Valladolid, Spain.
Biomater Adv. 2025 Sep;174:214312. doi: 10.1016/j.bioadv.2025.214312. Epub 2025 Apr 8.
Compliance mismatch and suboptimal hemocompatibility prevent the use of the traditional materials used for vascular prostheses or degradable synthetic polymers as small-diameter vessel bypass grafts. Here, we show the combination of silk fibroin and elastin-like recombinamers in a dip-coating multilayer setup to achieve smooth small-diameter vascular grafts with ultrathin wall thickness. We found in both FTIR and mechanical characterization that the novel material combination was successful through the double crosslinked interpenetrated network formed by elastin-like recombinamers and silk fibroin. This enabled the graft to have mechanical compliance that followed physiological behaviour, differently from the synthetic materials traditionally used in clinics. The mechanical behaviour of these grafts also achieved burst pressure (745.44 ± 102.92 mmHg) and suture retention strength (0.86 ± 0.13 N) required for clinical application. The structure proved to have low platelet adhesion in the thrombogenicity assessment (3.79 ± 3.26 % of platelet area coverage), which is essential for successful outcomes in physiological conditions. Our results demonstrate the successful combination of the two materials in a technology platform that can be adjusted in both diameter and wall thickness and possesses suitable properties as a small-diameter vascular graft. We anticipate these results to be the starting point for more in vitro and in vivo tests possibly transitioning into clinical application.
顺应性不匹配和血液相容性欠佳阻碍了用于血管假体的传统材料或可降解合成聚合物作为小直径血管搭桥移植物的使用。在此,我们展示了在浸涂多层装置中丝素蛋白和类弹性蛋白重组体的组合,以实现具有超薄壁厚的光滑小直径血管移植物。我们通过傅里叶变换红外光谱(FTIR)和力学表征发现,通过类弹性蛋白重组体和丝素蛋白形成的双交联互穿网络,这种新型材料组合是成功的。这使得移植物具有符合生理行为的机械顺应性,这与临床上传统使用的合成材料不同。这些移植物的力学行为还达到了临床应用所需的爆破压力(745.44±102.92毫米汞柱)和缝线保留强度(0.86±0.13牛)。在血栓形成评估中,该结构显示出低血小板粘附性(血小板面积覆盖率为3.79±3.26%),这对于在生理条件下取得成功结果至关重要。我们的结果证明了这两种材料在一个技术平台上的成功组合,该平台在直径和壁厚方面均可调节,并具有作为小直径血管移植物的合适性能。我们预计这些结果将成为更多体外和体内测试的起点,可能会过渡到临床应用。