Suppr超能文献

气候和土地利用变化下的未来洪水易发性制图

Future flood susceptibility mapping under climate and land use change.

作者信息

Khodaei Hamidreza, Nasiri Saleh Farzin, Nobakht Dalir Afsaneh, Zarei Erfan

机构信息

Department of Water Engineering, Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran.

出版信息

Sci Rep. 2025 Apr 11;15(1):12394. doi: 10.1038/s41598-025-97008-0.

Abstract

Floods are a significant natural hazard, causing severe damage. Understanding how climate change and land use and land cover (LULC) changes influence flood patterns is crucial for developing sustainable management strategies. This research aims to develop flood susceptibility maps considering the impacts of climate change and land use changes, providing insights into risks from urbanization and climate shifts. Three machine learning models-XGBoost, Random Forest (RF), and Support Vector Machine (SVM)-optimized with Particle Swarm Optimization, were applied to the flood-prone Kashkan watershed in Iran. Results showed that distance from the river, digital elevation model, precipitation, and LULC were the most influential factors. The RF model outperformed others in mapping flood-prone areas, with high-risk zones covering 20% (1908 km) of the region, primarily in built-up areas. Land use projections for 2050, using the CA-MARKOV model, estimate built-up areas will expand to 859.3 km. Future precipitation patterns were examined using 8 selected general circulation models under the SSP126 and SSP585 scenarios. Analysis under the SSP585 scenario indicates a 1.9 km rise in moderate flood areas, a 36.26 km increase in high-risk zones, and a 21.94 km decline in very low-risk areas, highlighting expansion of high and moderate flood risk areas.

摘要

洪水是一种重大的自然灾害,会造成严重破坏。了解气候变化以及土地利用和土地覆盖(LULC)变化如何影响洪水模式对于制定可持续管理策略至关重要。本研究旨在绘制考虑气候变化和土地利用变化影响的洪水易发性地图,以深入了解城市化和气候变化带来的风险。将通过粒子群优化算法优化的三种机器学习模型——极端梯度提升(XGBoost)、随机森林(RF)和支持向量机(SVM)——应用于伊朗洪水多发的卡什坎流域。结果表明,与河流的距离、数字高程模型、降水量和土地利用与土地覆盖是最具影响力的因素。随机森林模型在绘制洪水易发区方面表现优于其他模型,高风险区域占该地区的20%(1908平方公里),主要集中在建成区。使用CA-MARKOV模型对2050年的土地利用进行预测,估计建成区将扩大到859.3平方公里。在共享社会经济路径(SSP)126和SSP585情景下,使用8个选定的全球环流模型对未来降水模式进行了研究。在SSP585情景下的分析表明,中度洪水区域增加1.9平方公里,高风险区域增加36.26平方公里,极低风险区域减少21.94平方公里,突出了高风险和中度洪水风险区域的扩大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6655/11992132/0553af7dadf2/41598_2025_97008_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验