Suppr超能文献

利用随机森林回归模型和地理信息系统进行山洪灾害易发性制图预测

Forecasting of flash flood susceptibility mapping using random forest regression model and geographic information systems.

作者信息

Wahba Mohamed, Essam Radwa, El-Rawy Mustafa, Al-Arifi Nassir, Abdalla Fathy, Elsadek Wael M

机构信息

Civil Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt.

Mathematics and Engineering Physics Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt.

出版信息

Heliyon. 2024 Jul 3;10(13):e33982. doi: 10.1016/j.heliyon.2024.e33982. eCollection 2024 Jul 15.

Abstract

Flash floods, rapid and devastating inundations of water, are increasingly linked to the intensifying effects of climate change, posing significant challenges for both vulnerable communities and sustainable environmental management. The primary goal of this research is to investigate and predict a Flood Susceptibility Map (FSM) for the Ibaraki prefecture in Japan. This research utilizes a Random Forest (RF) regression model and GIS, incorporating 11 environmental variables (involving elevation, slope, aspect, distance to stream, distance to river, distance to road, land cover, topographic wetness index, stream power index, and plan and profile curvature), alongside a dataset comprising 224 instances of flooded and non-flooded locations. The data was randomly classified into a 70 % training set for model development, with the remaining 30 % used for model validation through Receiver Operating Characteristics (ROC) curve analysis. The resulting map indicated that approximately two-thirds of the prefecture as exhibiting low to very low flood susceptibility, while approximately one-fifth of the region is categorized as high to very high flood susceptibility. Furthermore, the RF model achieved a noteworthy validation with an area under the ROC curve of 99.56 %. Ultimately, this FSM serves as a crucial tool for policymakers in guiding appropriate spatial planning and flood mitigation strategies.

摘要

暴洪,即迅速且具有毁灭性的洪水泛滥,越来越多地与气候变化的加剧影响相关联,这给脆弱社区和可持续环境管理都带来了重大挑战。本研究的主要目标是调查和预测日本茨城县的洪水易发性地图(FSM)。本研究利用随机森林(RF)回归模型和地理信息系统(GIS),纳入了11个环境变量(包括海拔、坡度、坡向、到溪流的距离、到河流的距离、到道路的距离、土地覆盖、地形湿度指数、水流功率指数以及平面和剖面曲率),同时还有一个包含224个洪水淹没和未淹没地点实例的数据集。数据被随机分为70%用于模型开发的训练集,其余30%通过接收者操作特征(ROC)曲线分析用于模型验证。生成的地图显示,该地区约三分之二的区域洪水易发性为低到极低,而约五分之一的区域被归类为高到极高洪水易发性。此外,RF模型在ROC曲线下面积达到99.56%,取得了显著的验证效果。最终,这一FSM地图成为政策制定者指导适当空间规划和洪水缓解策略的关键工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebb1/11282991/96b75afb2678/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验