Kim Soyeon, Yu Yonggyun, Seo Hogeon
Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Daejeon, 34057, Republic of Korea.
University of Science & Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
Sci Rep. 2025 Apr 11;15(1):12474. doi: 10.1038/s41598-025-97498-y.
Widely used ultrasonic simulation systems often rely on complex graphical user interfaces (GUIs) or scripting, resulting in substantial time investments and reduced accessibility for new users. In this study, we propose a novel text-based simulation control architecture, which leverages a large language model (LLM) and the ground artificial intelligence (AI) approach to streamline the control of ultrasonic simulation systems. By modularizing the functionalities of the SimNDT program into discrete functions and enabling natural language-based command interpretation, the proposed method reduces the average simulation configuration time by approximately 75%. To further mitigate task failures in scenario generation using the LLM, we introduce the ground AI approach, which employs self-review mechanisms and multi-agent collaboration to improve task completion rates. In particular, when vectorized output lengths deviate from the standard, we regenerate outputs using multiple LLM agents, reducing the scenario generation error rate from 23.89 to 1.48% and enhancing reliability significantly. These advancements underscore the potential of AI-driven methods in reducing operational costs and enhancing reliability in simulation frameworks. By integrating text-based control and Ground AI mechanisms, the proposed approach provides an efficient and scalable alternative to traditional GUI-based control methods, particularly in time-sensitive applications such as digital twin systems.
广泛使用的超声模拟系统通常依赖复杂的图形用户界面(GUI)或脚本,这导致大量的时间投入,并降低了新用户的可及性。在本研究中,我们提出了一种新颖的基于文本的模拟控制架构,该架构利用大语言模型(LLM)和基础人工智能(AI)方法来简化超声模拟系统的控制。通过将SimNDT程序的功能模块化成分离的函数,并实现基于自然语言的命令解释,所提出的方法将平均模拟配置时间减少了约75%。为了进一步减少在使用LLM进行场景生成时的任务失败,我们引入了基础AI方法,该方法采用自我审查机制和多智能体协作来提高任务完成率。特别是,当向量化输出长度偏离标准时,我们使用多个LLM智能体重新生成输出,将场景生成错误率从23.89%降低到1.48%,并显著提高了可靠性。这些进展凸显了人工智能驱动方法在降低模拟框架中的运营成本和提高可靠性方面的潜力。通过集成基于文本的控制和基础AI机制,所提出的方法为传统的基于GUI的控制方法提供了一种高效且可扩展的替代方案,特别是在诸如数字孪生系统等对时间敏感的应用中。