Feng Jiahui, Gong Zheng, Yang Jialing, Mo Yuting, Song Fengqian
Department of Gastroenterology, Loudi Central Hospital, Loudi, Hunan, China.
Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Sci Rep. 2025 Apr 11;15(1):12411. doi: 10.1038/s41598-025-97670-4.
Non-alcoholic fatty liver disease (NAFLD) affects about 25% of adults worldwide. Its advanced form, non-alcoholic steatohepatitis (NASH), is a major cause of liver fibrosis, but there are no non-invasive tests for diagnosing or preventing it. In our study, we analyzed data from multiple sources to find crucial genes linked to NASH fibrosis. We built diagnostic models using 103 machine learning algorithms and validated them with two external datasets. All models performed well, with the best one (RF + Enet[alpha = 0.6]) achieving an average AUC of 0.822. This model used five key genes: LUM, COL1A2, THBS2, COL5A2, and NTS. Our findings show that these genes are important in collagen and extracellular matrix pathways, shedding light on how NASH progresses to liver fibrosis. We also found that certain immune cells, like M1 macrophages, are involved in this process. This study provides a reliable diagnostic tool for assessing fibrosis risk in NASH patients and suggests potential for immunotherapy, laying a foundation for future treatments.
非酒精性脂肪性肝病(NAFLD)影响着全球约25%的成年人。其晚期形式,即非酒精性脂肪性肝炎(NASH),是肝纤维化的主要原因,但目前尚无用于诊断或预防该病的非侵入性检测方法。在我们的研究中,我们分析了来自多个来源的数据,以寻找与NASH纤维化相关的关键基因。我们使用103种机器学习算法构建了诊断模型,并使用两个外部数据集对其进行了验证。所有模型表现良好,最佳模型(RF + Enet[alpha = 0.6])的平均AUC达到0.822。该模型使用了五个关键基因:LUM、COL1A2、THBS2、COL5A2和NTS。我们的研究结果表明,这些基因在胶原蛋白和细胞外基质途径中很重要,揭示了NASH如何发展为肝纤维化。我们还发现某些免疫细胞,如M1巨噬细胞,参与了这一过程。这项研究为评估NASH患者的纤维化风险提供了一种可靠的诊断工具,并提示了免疫治疗的潜力,为未来的治疗奠定了基础。