Suppr超能文献

基于汇总数据和生物特征,利用机器学习进行心电图异常检测。

Electrocardiogram Abnormality Detection Using Machine Learning on Summary Data and Biometric Features.

作者信息

Basco Kennette James, Singh Alana, Nasef Daniel, Hartnett Christina, Ruane Michael, Tagliarino Jason, Nizich Michael, Toma Milan

机构信息

Department of Computer Science, College of Engineering and Computing Sciences, New York Institute of Technology, 1855 Broadway, New York, NY 10023, USA.

Entrepreneurship and Technology Innovation Center, College of Engineering and Computing Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA.

出版信息

Diagnostics (Basel). 2025 Apr 1;15(7):903. doi: 10.3390/diagnostics15070903.

Abstract

Electrocardiogram data are widely used to diagnose cardiovascular diseases, a leading cause of death globally. Traditional interpretation methods are manual, time-consuming, and prone to error. Machine learning offers a promising alternative for automating the classification of electrocardiogram abnormalities. This study explores the use of machine learning models to classify electrocardiogram abnormalities using a dataset that combines clinical features (e.g., age, weight, smoking status) with key electrocardiogram measurements, without relying on time-series data. The dataset included demographic and electrocardiogram-related biometric data. Preprocessing steps addressed class imbalance, outliers, feature scaling, and the encoding of categorical variables. Five machine learning models-Gaussian Naive Bayes, support vector machines, random forest trees, extremely randomized trees, gradient boosted trees, and an ensemble of top-performing classifiers-were trained and optimized using stratified k-fold cross-validation. Model performance was evaluated on a reserved testing set using metrics such as accuracy, precision, recall, and F1-score. The extremely randomized trees model achieved the best performance, with a testing accuracy of 66.79%, recall of 66.79%, and F1-score of 62.93%. Ventricular rate, QRS duration, and QTC (Bezet) were identified as the most important features. Challenges in classifying borderline cases were noted due to class imbalance and overlapping features. This study demonstrates the potential of machine learning models, particularly extremely randomized trees, in classifying electrocardiogram abnormalities using demographic and biometric data. While promising, the absence of time-series data limits diagnostic accuracy. Future work incorporating time-series signals and advanced deep learning techniques could further improve performance and clinical relevance.

摘要

心电图数据被广泛用于诊断心血管疾病,而心血管疾病是全球主要的死亡原因。传统的解读方法是人工操作,耗时且容易出错。机器学习为心电图异常分类的自动化提供了一种有前景的替代方法。本研究探索使用机器学习模型,利用一个将临床特征(如年龄、体重、吸烟状况)与关键心电图测量值相结合的数据集来对心电图异常进行分类,且不依赖时间序列数据。该数据集包括人口统计学和与心电图相关的生物特征数据。预处理步骤解决了类别不平衡、异常值、特征缩放以及分类变量的编码问题。使用分层k折交叉验证对五个机器学习模型——高斯朴素贝叶斯、支持向量机、随机森林树、极端随机树、梯度提升树以及表现最佳的分类器集成——进行了训练和优化。使用准确率、精确率、召回率和F1分数等指标在预留的测试集上评估模型性能。极端随机树模型取得了最佳性能,测试准确率为66.79%,召回率为66.79%,F1分数为62.93%。心室率、QRS波时限和QTC(贝泽特)被确定为最重要的特征。由于类别不平衡和特征重叠,在对临界病例进行分类时存在挑战。本研究证明了机器学习模型,特别是极端随机树,在利用人口统计学和生物特征数据对心电图异常进行分类方面的潜力。虽然前景广阔,但缺乏时间序列数据限制了诊断准确性。纳入时间序列信号和先进深度学习技术的未来工作可能会进一步提高性能和临床相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f178/11988324/4d1881b765a5/diagnostics-15-00903-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验