Institute of Biomedical Engineering, TU Dresden, Fetscherstr. 29, 01307, Dresden, Germany.
Sci Rep. 2024 Jun 7;14(1):13122. doi: 10.1038/s41598-024-63656-x.
Deep learning-based methods have demonstrated high classification performance in the detection of cardiovascular diseases from electrocardiograms (ECGs). However, their blackbox character and the associated lack of interpretability limit their clinical applicability. To overcome existing limitations, we present a novel deep learning architecture for interpretable ECG analysis (xECGArch). For the first time, short- and long-term features are analyzed by two independent convolutional neural networks (CNNs) and combined into an ensemble, which is extended by methods of explainable artificial intelligence (xAI) to whiten the blackbox. To demonstrate the trustworthiness of xECGArch, perturbation analysis was used to compare 13 different xAI methods. We parameterized xECGArch for atrial fibrillation (AF) detection using four public ECG databases ( ECGs) and achieved an F1 score of 95.43% in AF versus non-AF classification on an unseen ECG test dataset. A systematic comparison of xAI methods showed that deep Taylor decomposition provided the most trustworthy explanations ( compared to the second-best approach). xECGArch can account for short- and long-term features corresponding to clinical features of morphology and rhythm, respectively. Further research will focus on the relationship between xECGArch features and clinical features, which may help in medical applications for diagnosis and therapy.
基于深度学习的方法在心电图(ECG)心血管疾病检测中表现出了较高的分类性能。然而,其黑盒特性以及缺乏可解释性限制了其临床应用。为了克服现有局限性,我们提出了一种新颖的可解释心电图分析深度学习架构(xECGArch)。首次通过两个独立的卷积神经网络(CNN)分析短期和长期特征,并将它们组合成一个集合,然后通过可解释人工智能(xAI)方法扩展该集合以实现黑盒白化。为了证明 xECGArch 的可信度,我们使用扰动分析比较了 13 种不同的 xAI 方法。我们使用四个公共 ECG 数据库(MIT-BIH ECGs)对 xECGArch 进行参数化,用于房颤(AF)检测,并在一个未见 ECG 测试数据集上实现了 AF 与非 AF 分类的 F1 得分为 95.43%。对 xAI 方法的系统比较表明,深度泰勒分解提供了最可信的解释(与第二好的方法相比)。xECGArch 可以分别解释与形态和节律的临床特征相对应的短期和长期特征。进一步的研究将集中在 xECGArch 特征与临床特征之间的关系上,这可能有助于在诊断和治疗方面的医学应用。