Suppr超能文献

SAG-YOLO:一种轻量级实时一日龄雏鸡性别检测方法。

SAG-YOLO: A Lightweight Real-Time One-Day-Old Chick Gender Detection Method.

作者信息

Chang Yulong, Sun Rongqian, Yang Zheng, Li Shijun, Wang Qiaohua

机构信息

College of Engineering, Huazhong Agricultural University, Wuhan 430070, China.

College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.

出版信息

Sensors (Basel). 2025 Mar 21;25(7):1973. doi: 10.3390/s25071973.

Abstract

Feather sexing, based on wing feather growth rate, is a widely used method for chick sex identification. However, it still relies on manual sorting, necessitating automation. This study proposes an improved SAG-YOLO method for chick sex detection. Firstly, the model reduces both parameter size and computational complexity by replacing the original feature extraction with the StarNet lightweight Backbone. Next, the Additive Convolutional Gated Linear Unit (Additive CGLU) module, incorporated in the Neck section, enhances multi-scale feature interaction, improving detail capture while maintaining efficiency. Furthermore, the Group Normalization Head (GN Head) decreases parameters and computational overhead while boosting generalization and detection efficiency. Experimental results demonstrate that SAG-YOLO achieves a precision (P) of 90.5%, recall (R) of 90.7%, and mean average precision (mAP) of 97.0%, outperforming YOLO v10n by 1.3%, 2.6%, and 1.5%, respectively. Model parameters and floating-point operations are reduced by 0.8633 M and 2.0 GFLOPs, with a 0.2 ms faster GPU inference speed. In video stream detection, the model achieves 100% accuracy for female chicks and 96.25% accuracy for male chicks, demonstrating strong performance under motion blur and feature fuzziness. The improved model exhibits robust generalization, providing a practical solution for the intelligent sex sorting of day-old chicks.

摘要

基于翅膀羽毛生长速度的羽色鉴别是一种广泛应用于雏鸡性别鉴定的方法。然而,它仍然依赖人工分拣,因此需要自动化。本研究提出了一种改进的SAG-YOLO方法用于雏鸡性别检测。首先,该模型通过用StarNet轻量级主干网络替换原始特征提取来减小参数规模和计算复杂度。其次,颈部部分引入的加法卷积门控线性单元(Additive CGLU)模块增强了多尺度特征交互,在保持效率的同时提高了细节捕捉能力。此外,组归一化头(GN Head)在提高泛化能力和检测效率的同时减少了参数和计算开销。实验结果表明,SAG-YOLO的精确率(P)为90.5%,召回率(R)为90.7%,平均精度均值(mAP)为97.0%,分别比YOLO v10n高出1.3%、2.6%和1.5%。模型参数和浮点运算分别减少了0.8633 M和2.0 GFLOPs,GPU推理速度快0.2毫秒。在视频流检测中,该模型对雌性雏鸡的准确率达到100%,对雄性雏鸡的准确率达到96.25%,在运动模糊和特征模糊的情况下表现出强大的性能。改进后的模型具有强大的泛化能力,为一日龄雏鸡的智能性别分拣提供了一种实用的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf25/11991185/34f4caad1620/sensors-25-01973-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验