Suppr超能文献

用于疟疾诊断的基于黑磷的表面等离子体共振生物传感器

Black Phosphorous-Based Surface Plasmon Resonance Biosensor for Malaria Diagnosis.

作者信息

Tene Talia, Cevallos Yesenia, Vinueza-Naranjo Paola Gabriela, Inca Deysi, Vacacela Gomez Cristian

机构信息

Department of Chemistry, Universidad Técnica Particular de Loja, Loja 110160, Ecuador.

Universidad San Francisco de Quito IMNE, Diego de Robles s/n, Cumbayá, Quito 170901, Ecuador.

出版信息

Sensors (Basel). 2025 Mar 26;25(7):2068. doi: 10.3390/s25072068.

Abstract

This study presents a black phosphorus-based surface plasmon resonance (SPR) biosensor for malaria detection, integrating silicon nitride (SiN) and single-stranded DNA (ssDNA) to enhance sensitivity and molecular recognition. The biosensor configurations were optimized through numerical simulations, evaluating metal thickness, dielectric layer thickness, and the number of black phosphorus layers to achieve maximum performance. The optimized system (Opt-Sys) exhibited high sensitivity (464.4°/RIU for early-stage malaria) and improved detection accuracy, outperforming conventional SPR sensors. Performance was assessed across malaria progression stages, demonstrating a clear resonance shift, increased attenuation, and enhanced biomolecular interactions. Key metrics, including the figure of merit, limit of detection, and comprehensive sensitivity factor, confirmed the sensor's superior performance. Comparative analysis against state-of-the-art SPR biosensors further validated their capability for highly sensitive and specific malaria detection. These findings establish a promising plasmonic biosensing platform for early malaria diagnosis, potentially improving disease management in resource-limited settings.

摘要

本研究展示了一种用于疟疾检测的基于黑磷的表面等离子体共振(SPR)生物传感器,该传感器集成了氮化硅(SiN)和单链DNA(ssDNA)以提高灵敏度和分子识别能力。通过数值模拟对生物传感器的配置进行了优化,评估了金属厚度、介电层厚度和黑磷层数,以实现最佳性能。优化后的系统(Opt-Sys)表现出高灵敏度(早期疟疾为464.4°/RIU)和更高的检测准确性,优于传统的SPR传感器。在疟疾进展的各个阶段对性能进行了评估,结果表明出现了明显的共振偏移、衰减增加以及生物分子相互作用增强。包括品质因数、检测限和综合灵敏度因子在内的关键指标证实了该传感器的卓越性能。与最先进的SPR生物传感器进行的对比分析进一步验证了其用于高灵敏度和特异性疟疾检测的能力。这些发现建立了一个有前景的等离子体生物传感平台,用于早期疟疾诊断,有可能改善资源有限环境下的疾病管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/258d/11991473/f63016b146a5/sensors-25-02068-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验