Suppr超能文献

综合生理、转录组和代谢组分析揭示茶树增强耐旱性的潜在机制。

Integrated Physiological, Transcriptomic, and Metabolomic Analysis Reveals Mechanism Underlying the -Enhanced Drought Tolerance in Tea Plants.

作者信息

Shen Gaojian, Cao Hongli, Zeng Qin, Guo Xiaoyu, Shao Huixin, Wang Huiyi, Luo Liyong, Yue Chuan, Zeng Liang

机构信息

Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China.

Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China.

出版信息

Plants (Basel). 2025 Mar 21;14(7):989. doi: 10.3390/plants14070989.

Abstract

Drought stress significantly impairs the output of tea plants and the quality of tea products. Although has demonstrated the ability to enhance drought tolerance in host plants, its impact on tea plants () experiencing drought stress is unknown. This study assessed the response of tea plants by inoculating under drought conditions. Phenotypic and physiological analyses demonstrated that mitigated drought damage in tea plants by regulating osmotic equilibrium and antioxidant enzyme activity. Metabolome analysis showed that promoted the accumulation of flavonoid metabolites, including naringin, (-)-epiafzelechin, naringenin chalcone, and dihydromyricetin, while inhibiting the content of amino acids and derivatives, such as homoarginine, L-arginine, N6-acetyl-L-lysine, and N-palmitoylglycine, during water deficit. The expression patterns of -stimulated genes were investigated using transcriptome analysis. -induced drought-responsive genes involved in osmotic regulation, antioxidant protection, transcription factors, and signaling were identified and recognized as possibly significant in -mediated drought tolerance in tea plants. Particularly, the flavonoid biosynthesis pathway was identified from the metabolomic and transcriptomic analysis using Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Moreover, flavonoid biosynthesis-related genes were identified. -inoculation significantly upregulated the expression of (), (), (), (), (), and () genes compared to uninoculated plants subjected to water stress. Consequently, we concluded that inoculation primarily alleviates drought stress in tea plants by modulating the flavonoid biosynthesis pathway. These results will provide insights into the mechanisms of -enhanced drought tolerance in tea plants and establish a solid foundation for its application as a microbial agent in the management of drought in tea plants cultivation.

摘要

干旱胁迫显著损害茶树的产量和茶叶产品的质量。虽然[具体微生物名称未给出]已证明有能力增强宿主植物的耐旱性,但其对遭受干旱胁迫的茶树([茶树品种未给出])的影响尚不清楚。本研究通过在干旱条件下接种[具体微生物名称未给出]来评估茶树的反应。表型和生理分析表明,[具体微生物名称未给出]通过调节渗透平衡和抗氧化酶活性减轻了茶树的干旱损害。代谢组分析表明,在水分亏缺期间,[具体微生物名称未给出]促进了黄酮类代谢物的积累,包括柚皮苷、(-)-表阿夫儿茶精、柚皮素查尔酮和二氢杨梅素,同时抑制了氨基酸及其衍生物的含量,如高精氨酸、L-精氨酸、N6-乙酰-L-赖氨酸和N-棕榈酰甘氨酸。使用转录组分析研究了[具体微生物名称未给出]刺激基因的表达模式。鉴定出了参与渗透调节、抗氧化保护、转录因子和信号传导的[具体微生物名称未给出]诱导的干旱响应基因,并认为这些基因在[具体微生物名称未给出]介导的茶树耐旱性中可能具有重要意义。特别是,使用京都基因与基因组百科全书(KEGG)富集分析从代谢组学和转录组学分析中鉴定出了黄酮类生物合成途径。此外,还鉴定出了与黄酮类生物合成相关的基因。与未接种水分胁迫的植物相比,接种[具体微生物名称未给出]显著上调了[具体基因名称未给出]([基因1])、[具体基因名称未给出]([基因2])、[具体基因名称未给出]([基因3])、[具体基因名称未给出]([基因4])、[具体基因名称未给出]([基因5])和[具体基因名称未给出]([基因6])基因的表达。因此,我们得出结论,接种[具体微生物名称未给出]主要通过调节黄酮类生物合成途径减轻茶树的干旱胁迫。这些结果将为[具体微生物名称未给出]增强茶树耐旱性的机制提供见解,并为其作为微生物制剂在茶树栽培干旱管理中的应用奠定坚实基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fb3/11990811/850566f9638b/plants-14-00989-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验