Sestini Matteo, Puppi Dario, Braccini Simona, Macchi Teresa, Matungano Beata, Macolic Sven, Guazzini Tommaso, Parrini Gianluca, Milazzo Mario, Danti Serena
Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy.
Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy.
Polymers (Basel). 2025 Mar 21;17(7):836. doi: 10.3390/polym17070836.
Additive manufacturing (AM) is rapidly advancing, particularly in biomedical applications, necessitating a deeper understanding of the mechanical behavior of 3D-printed materials. Structures created using fused deposition modeling (FDM) exhibit anisotropic properties due to fabrication inhomogeneity and material architecture. Finite element modeling (FEM) is commonly used to predict mechanical behavior, though studies on porous structures have not deeply investigated the influence of geometrical features on global mechanical behavior. This study aimed to correlate the mechanical properties of porous polylactic acid scaffolds with different patterns and infill densities, fabricated via AM through the synergies of experimental and computational approaches. Tensile testing and FEM simulations were conducted, revealing differences in elastic modulus and tensile strength based on infill orientation. A sensitivity analysis on the main geometrical features assessed variations in filament dimensions and layer spacing. FEM simulations showed strong agreement with experimental data, validating their predictive capability, with deviations due to minor structural defects and irregularities in the extruded filaments. This study established for the first time the influence of geometrical details on the elastic properties of porous scaffolds, opening up to new tailored design for, but not limited to, biomedical applications.
增材制造(AM)正在迅速发展,特别是在生物医学应用领域,这就需要更深入地了解3D打印材料的力学行为。使用熔融沉积建模(FDM)创建的结构由于制造不均匀性和材料结构而表现出各向异性。有限元建模(FEM)通常用于预测力学行为,不过关于多孔结构的研究尚未深入探究几何特征对整体力学行为的影响。本研究旨在通过实验和计算方法的协同作用,关联通过增材制造制备的具有不同图案和填充密度的多孔聚乳酸支架的力学性能。进行了拉伸测试和有限元模拟,揭示了基于填充方向的弹性模量和拉伸强度的差异。对主要几何特征进行了敏感性分析,评估了细丝尺寸和层间距的变化。有限元模拟结果与实验数据高度吻合,验证了其预测能力,偏差主要是由于微小的结构缺陷和挤出细丝的不规则性造成的。本研究首次确定了几何细节对多孔支架弹性性能的影响,为生物医学应用(但不限于生物医学应用)开辟了新的定制设计途径。