Department of Chemistry, Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States.
Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.
Environ Sci Technol. 2021 Aug 3;55(15):10744-10757. doi: 10.1021/acs.est.0c07253. Epub 2021 Jul 20.
Nanocellulose has attracted widespread interest for applications in materials science and biomedical engineering due to its natural abundance, desirable physicochemical properties, and high intrinsic mineralizability (i.e., complete biodegradability). A common strategy to increase dispersibility in polymer matrices is to modify the hydroxyl groups on nanocellulose through covalent functionalization, but such modification strategies may affect the desirable biodegradation properties exhibited by pristine nanocellulose. In this study, cellulose nanofibrils (CNFs) functionalized with a range of esters, carboxylic acids, or ethers exhibited decreased rates and extents of mineralization by anaerobic and aerobic microbial communities compared to unmodified CNFs, with etherified CNFs exhibiting the highest level of recalcitrance. The decreased biodegradability of functionalized CNFs depended primarily on the degree of substitution at the surface of the material rather than within the bulk. This dependence on surface chemistry was attributed not only to the large surface area-to-volume ratio of nanocellulose but also to the prerequisite surface interaction by microorganisms necessary to achieve biodegradation. Results from this study highlight the need to quantify the type and coverage of surface substituents in order to anticipate their effects on the environmental persistence of functionalized nanocellulose.
由于纳米纤维素具有丰富的天然资源、理想的物理化学性质和高的固有矿化性(即完全可生物降解性),因此在材料科学和生物医学工程领域引起了广泛的关注。增加纳米纤维素在聚合物基质中分散性的一种常见策略是通过共价功能化修饰纳米纤维素上的羟基,但这种修饰策略可能会影响纳米纤维素原有的理想生物降解性能。在这项研究中,与未修饰的 CNF 相比,用一系列酯、羧酸或醚修饰的纤维素纳米纤维(CNF)通过厌氧和需氧微生物群落的矿化速率和程度降低,其中醚化的 CNF 表现出最高的抗降解性。功能化 CNF 的生物降解性降低主要取决于材料表面的取代度,而不是在体积内。这种对表面化学的依赖性不仅归因于纳米纤维素的大表面积与体积比,还归因于微生物实现生物降解所需的表面相互作用的前提条件。这项研究的结果强调了需要定量表面取代基的类型和覆盖度,以便预测它们对功能化纳米纤维素在环境中的持久性的影响。