Tanaka Hiroki, Sato Yuka, Nakabayashi Tomoya, Tanaka Akari, Nishio Kazuma, Matsumoto Chika, Matsumaru Atsuya, Yamakawa Takuma, Ishizaki Kota, Ueda Keisuke, Higashi Kenjirou, Moribe Kunikazu, Nakai Yuta, Tange Kota, Akita Hidetaka
Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai city, Miyagi 980-8578, Japan.
Center for Advanced Modalities and DDS, Osaka University, Suita 565-0871 Osaka, Japan.
Nano Lett. 2025 Apr 23;25(16):6445-6453. doi: 10.1021/acs.nanolett.4c06643. Epub 2025 Apr 12.
Lipid nanoparticles with encapsulated mRNA (mRNA-LNPs) have become key modalities for personalized medicines and RNA vaccines. Once the platform technology is established, the mRNA-LNPs could be applicable to a variety of protein-based therapeutic strategies. A post-encapsulation method, in which the mRNA solution is incubated with preformed mRNA-free LNPs to prepare the mRNA-LNPs, would accelerate the development of RNA-based therapeutics since even nonexperts could manufacture the mRNA-LNPs. In this study, we describe that the post-encapsulation of mRNA into mRNA-free LNPs is accompanied by "nucleic acid-bridged fusion" of them. The adsorption of mRNA onto mRNA-free LNPs via electrostatic interactions and the internalization of mRNA into the LNPs via particle-to-particle fusion are two steps that occur at different levels of pH. To complete post-encapsulation using only one-step mixing, the pH must be controlled within a limited region where both processes occur simultaneously. The size of the mRNA-free LNPs determines the effectiveness of mRNA loading.
包裹有信使核糖核酸的脂质纳米颗粒(mRNA-LNPs)已成为个性化药物和RNA疫苗的关键形式。一旦建立了平台技术,mRNA-LNPs就可以应用于各种基于蛋白质的治疗策略。一种后包封方法,即信使核糖核酸溶液与预先形成的无信使核糖核酸的脂质纳米颗粒孵育以制备mRNA-LNPs,将加速基于RNA的治疗药物的开发,因为即使非专业人员也可以制造mRNA-LNPs。在本研究中,我们描述了将信使核糖核酸后包封到无信使核糖核酸的脂质纳米颗粒中伴随着它们的“核酸桥接融合”。信使核糖核酸通过静电相互作用吸附到无信使核糖核酸的脂质纳米颗粒上,以及信使核糖核酸通过颗粒间融合内化到脂质纳米颗粒中是在不同pH水平发生的两个步骤。为了仅通过一步混合完成后包封,必须将pH控制在两个过程同时发生的有限区域内。无信使核糖核酸的脂质纳米颗粒的大小决定了信使核糖核酸负载的有效性。