Lin Shiquan, Zhu Laipan, Tang Zhen, Wang Zhong Lin
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China.
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Nat Commun. 2022 Sep 5;13(1):5230. doi: 10.1038/s41467-022-32984-9.
Electron transfer has been proven the dominant charge carrier during contact electrification at the liquid-solid interface. However, the effect of electron spin in contact electrification remains to be investigated. This study examines the charge transfer between different liquids and ferrimagnetic solids in a magnetic field, focusing on the contribution of O molecules to the liquid-solid contact electrification. The findings reveal that magnetic fields promote electron transfer at the O-containing liquid-solid interfaces. Moreover, magnetic field-induced electron transfer increases at higher O concentrations in the liquids and decreases at elevated temperatures. The results indicate spin-selected electron transfer at liquid-solid interface. External magnetic fields can modulate the spin conversion of the radical pairs at the O-containing liquid and ferrimagnetic solid interfaces due to the Zeeman interaction, promoting electron transfer. A spin-selected electron transfer model for liquid-solid contact electrification is further proposed based on the radical pair mechanism, in which the HO molecules and the free unpaired electrons from the ferrimagnetic solids are considered radical pairs. The spin conversion of the [HO• •e] pairs is affected by magnetic fields, rendering the electron transfer magnetic field-sensitive.
电子转移已被证明是液固界面接触起电过程中的主要电荷载体。然而,电子自旋在接触起电中的作用仍有待研究。本研究考察了磁场中不同液体与亚铁磁性固体之间的电荷转移,重点关注O分子对液固接触起电的贡献。研究结果表明,磁场促进了含O液固界面处的电子转移。此外,磁场诱导的电子转移在液体中O浓度较高时增加,在温度升高时减少。结果表明液固界面存在自旋选择电子转移。由于塞曼相互作用,外部磁场可调节含O液体与亚铁磁性固体界面处自由基对的自旋转换,促进电子转移。基于自由基对机制,进一步提出了液固接触起电的自旋选择电子转移模型,其中HO分子和来自亚铁磁性固体的自由未配对电子被视为自由基对。[HO• •e]对的自旋转换受磁场影响,使电子转移对磁场敏感。