Liu Siru, Wright Aileen P, McCoy Allison B, Huang Sean S, Steitz Bryan, Wright Adam
Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37212, United States.
Department of Computer Science, Vanderbilt University, Nashville, TN 37240, United States.
J Am Med Inform Assoc. 2025 Jun 1;32(6):1032-1039. doi: 10.1093/jamia/ocaf059.
This study aims to develop and evaluate an approach using large language models (LLMs) and a knowledge graph to triage patient messages that need emergency care. The goal is to notify patients when their messages indicate an emergency, guiding them to seek immediate help rather than using the patient portal, to improve patient safety.
We selected 1020 messages sent to Vanderbilt University Medical Center providers between January 1, 2022 and March 7, 2023. We developed four models to triage these messages for emergencies: (1) Prompt-Only: the patient message was input with a prompt directly into the LLM; (2) Naïve Retrieval Augmented Generation (RAG): provided retrieved information as context to the LLM; (3) RAG from Knowledge Graph with Local Search: a knowledge graph was used to retrieve locally relevant information based on semantic similarities; (4) RAG from Knowledge Graph with Global Search: a knowledge graph was used to retrieve globally relevant information through hierarchical community detection. The knowledge base was a triage book covering 225 protocols.
The RAG from Knowledge Graph model with global search outperformed other models, achieving an accuracy of 0.99, a sensitivity of 0.98, and a specificity of 0.99. It demonstrated significant improvements in triaging emergency messages compared to LLM without RAG and naïve RAG.
The traditional LLM without any retrieval mechanism underperformed compared to models with RAG, which aligns with the expected benefits of augmenting LLMs with domain-specific knowledge sources. Our results suggest that providing external knowledge, especially in a structured manner and in community summaries, can improve LLM performance in triaging patient portal messages.
LLMs can effectively assist in triaging emergency patient messages after integrating with a knowledge graph about a nurse triage book. Future research should focus on expanding the knowledge graph and deploying the system to evaluate its impact on patient outcomes.
本研究旨在开发并评估一种使用大语言模型(LLMs)和知识图谱对需要紧急护理的患者信息进行分诊的方法。目标是当患者信息表明存在紧急情况时通知患者,引导他们立即寻求帮助而非使用患者门户网站,以提高患者安全性。
我们选取了2022年1月1日至2023年3月7日期间发送给范德比尔特大学医学中心医护人员的1020条信息。我们开发了四种模型来对这些信息进行紧急情况分诊:(1)仅提示:将患者信息与提示一起直接输入大语言模型;(2)朴素检索增强生成(RAG):将检索到的信息作为上下文提供给大语言模型;(3)基于局部搜索的知识图谱RAG:使用知识图谱基于语义相似性检索局部相关信息;(4)基于全局搜索的知识图谱RAG:通过分层社区检测使用知识图谱检索全局相关信息。知识库是一本涵盖225种规程的分诊手册。
基于全局搜索的知识图谱RAG模型优于其他模型,准确率达到0.99,灵敏度为0.98,特异性为0.99。与没有RAG的大语言模型和朴素RAG相比,它在分诊紧急信息方面有显著改进。
与具有RAG的模型相比,没有任何检索机制的传统大语言模型表现较差,这与用特定领域知识源增强大语言模型的预期益处相符。我们的结果表明,提供外部知识,尤其是以结构化方式和在社区摘要中提供,可以提高大语言模型在分诊患者门户网站信息方面的性能。
大语言模型在与关于护士分诊手册的知识图谱整合后,可以有效地协助分诊紧急患者信息。未来的研究应侧重于扩展知识图谱并部署该系统以评估其对患者结局的影响。