Saber Hicham, Albala Hussien, Aljaaidi Tariq, Jawarneh Yousef, Moumen Abdelkader, Aldwoah Khaled
Department of Mathematics, College of Science, University of Ha'il, 55473, Ha'il, Saudi Arabia.
Department of Computer Sciences, College of Sciences & Arts, Tanomah, King Khalid University, Abha, Saudi Arabia.
Sci Rep. 2025 Apr 12;15(1):12580. doi: 10.1038/s41598-025-96737-6.
This manuscript illustrates a fractional-order mathematical model for prostate cancer (PC) growth under pulsed treatment, incorporating the effects of effector cell killing and competition between androgen-dependent (AD) and androgen-independent (AI) PC cells. We establish the existence and uniqueness of solutions using fixed-point theorems (Leray-Schauder and Banach) and investigate Ulam-Hyers stability to assess the model's solution stability under the fractional order. Numerical results are obtained via the fractional Euler method for simulation of the model at various fractional orders. Graphical results illustrate the model's dynamics, and the impact of key parameters, including the effector cell killing rate and inter-cell competition, is investigated. These findings provide insights into the complex interplay between treatment, immune response, and cancer cell dynamics, potentially informing therapeutic strategies for PC.
本手稿阐述了一种用于前列腺癌(PC)在脉冲治疗下生长的分数阶数学模型,该模型纳入了效应细胞杀伤以及雄激素依赖(AD)和雄激素非依赖(AI)前列腺癌细胞之间竞争的影响。我们使用不动点定理(勒雷 - 绍德尔定理和巴拿赫定理)建立了解的存在性和唯一性,并研究了乌拉姆 - 海尔斯稳定性,以评估分数阶下模型解的稳定性。通过分数阶欧拉方法获得了在不同分数阶下模拟该模型的数值结果。图形结果展示了模型的动态特性,并研究了关键参数的影响,包括效应细胞杀伤率和细胞间竞争。这些发现为治疗、免疫反应和癌细胞动态之间的复杂相互作用提供了见解,可能为前列腺癌的治疗策略提供参考。