Aldwoah Khaled, Louati Hanen, Eljaneid Nedal, Aljaaidi Tariq, Alqarni Faez, Elsayed AbdelAziz
Department of Mathematics, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia.
Department of Mathematics, Faculty of Science, Northern Border University, Arar, Saudi Arabia.
PLoS One. 2025 Jan 10;20(1):e0313676. doi: 10.1371/journal.pone.0313676. eCollection 2025.
This study presents a novel approach to modeling breast cancer dynamics, one of the most significant health threats to women worldwide. Utilizing a piecewise mathematical framework, we incorporate both deterministic and stochastic elements of cancer progression. The model is divided into three distinct phases: (1) initial growth, characterized by a constant-order Caputo proportional operator (CPC), (2) intermediate growth, modeled by a variable-order CPC, and (3) advanced stages, capturing stochastic fluctuations in cancer cell populations using a stochastic operator. Theoretical analysis, employing fixed-point theory for the fractional-order phases and Ito calculus for the stochastic phase, establishes the existence and uniqueness of solutions. A robust numerical scheme, combining the nonstandard finite difference method for fractional models and the Euler-Maruyama method for the stochastic system, enables simulations of breast cancer progression under various scenarios. Critically, the model is validated against real breast cancer data from Saudi Arabia spanning 2004-2016. Numerical simulations accurately capture observed trends, demonstrating the model's predictive capabilities. Further, we investigate the impact of chemotherapy and its associated cardiotoxicity, illustrating different treatment response scenarios through graphical representations. This piecewise fractional-stochastic model offers a powerful tool for understanding and predicting breast cancer dynamics, potentially informing more effective treatment strategies.
本研究提出了一种全新的乳腺癌动态建模方法,乳腺癌是全球女性面临的最重大健康威胁之一。利用分段数学框架,我们纳入了癌症进展的确定性和随机性因素。该模型分为三个不同阶段:(1)初始生长阶段,其特征为常阶Caputo比例算子(CPC);(2)中间生长阶段,由变阶CPC建模;(3)晚期阶段,使用随机算子捕捉癌细胞群体中的随机波动。理论分析通过分数阶阶段的不动点理论和随机阶段的伊藤微积分,确定了解的存在性和唯一性。一种稳健的数值方案,结合了分数模型的非标准有限差分法和随机系统的欧拉-丸山方法,能够在各种情况下模拟乳腺癌进展。至关重要的是,该模型通过2004 - 2016年沙特阿拉伯的真实乳腺癌数据进行了验证。数值模拟准确地捕捉到了观察到的趋势,证明了该模型的预测能力。此外,我们研究了化疗及其相关心脏毒性的影响,通过图形表示说明了不同的治疗反应情况。这种分段分数阶随机模型为理解和预测乳腺癌动态提供了一个强大的工具,可能为更有效的治疗策略提供依据。