Fortulan Raphael, Raeisi Kheirabadi Noushin, Chiolerio Alessandro, Adamatzky Andrew
Unconventional Computing Laboratory, UWE, Bristol, UK.
School of Computing and Engineering, University of Huddersfield, Huddersfield, UK.
Sci Rep. 2025 Apr 12;15(1):12646. doi: 10.1038/s41598-025-97484-4.
This paper investigates the computational capabilities of colloidal systems, focusing on the integration of Boolean logic operations within gold nanoparticle suspensions under varying temperature conditions. As climate change, artificial intelligence, and privacy concerns present increasing challenges for massively parallel and low-power computing devices, there is a growing demand for novel computing substrates, and colloids offer a promising avenue for developing energy-efficient and locally deployable systems. Our research explores how temperature impacts the behavior of suspended nanoparticles and, consequently, their interactions and computational performance. Our findings demonstrate that colloidal systems can perform Boolean operations, which can be modulated through temperature changes. By showcasing the versatility of these systems, this study underscores the significance of exploring unconventional computing paradigms and lays the foundation for future research into liquid-based computational applications.
本文研究了胶体系统的计算能力,重点关注在不同温度条件下金纳米颗粒悬浮液中布尔逻辑运算的集成。随着气候变化、人工智能和隐私问题给大规模并行和低功耗计算设备带来越来越多的挑战,对新型计算基板的需求日益增长,而胶体为开发节能和可本地部署的系统提供了一条有前景的途径。我们的研究探索了温度如何影响悬浮纳米颗粒的行为,进而影响它们的相互作用和计算性能。我们的研究结果表明,胶体系统可以执行布尔运算,并且可以通过温度变化进行调制。通过展示这些系统的多功能性,本研究强调了探索非常规计算范式的重要性,并为未来基于液体的计算应用研究奠定了基础。