Xu Shenghua, Wang Zhuolu, Liu Jiping, Ma Xinrui, Zhou Tingting, Tang Qing
Chinese Academy of Surveying and Mapping, Beijing, 100830, China.
School of Mapping and Geographical Science, Liaoning Technical University, Fuxin, 123000, China.
Sci Rep. 2025 Apr 12;15(1):12552. doi: 10.1038/s41598-025-97074-4.
Landslides are among the geological disasters that frequently occur worldwide and significantly restrict the sustainable development of society. Therefore, it is of great practical significance to perform landslide susceptibility assessment. In addressing issues such as limited training samples, inadequate utilization of spatially effective features, and high computational costs associated with existing methods, we propose a landslide susceptibility assessment method (DS-DRN), which uses a lightweight dense residual network with emphasis on deep spatial features. To minimize computational costs, we design a depthwise separable residual module that optimizes traditional convolution on residual branches into depthwise separable convolution. Additionally, to prevent vanishing gradient and improve the reuse rate of landslide feature information, dense connections are employed to construct a deep feature extraction module. Finally, the output of the model is fed into the Softmax classifier for landslide susceptibility prediction. Taking Ya'an City in Sichuan Province as the study area, we compare the proposed DS-DRN method with three widely used deep learning methods: CNN, CPCNN-RF, and U-net. Evaluating model accuracy and performance, the DS-DRN method exhibits the highest prediction accuracy while also saving computational costs. Therefore, the proposed model can better fit the complex nonlinear relationship in landslide susceptibility, effectively mine deep spatial features, and address the high computational costs associated with complex networks.
山体滑坡是全球频繁发生的地质灾害之一,严重制约着社会的可持续发展。因此,进行滑坡易发性评估具有重要的现实意义。针对现有方法存在的训练样本有限、空间有效特征利用不足以及计算成本高等问题,我们提出了一种滑坡易发性评估方法(DS-DRN),该方法使用轻量级密集残差网络,重点关注深度空间特征。为了最小化计算成本,我们设计了一个深度可分离残差模块,将残差分支上的传统卷积优化为深度可分离卷积。此外,为了防止梯度消失并提高滑坡特征信息的重用率,采用密集连接来构建深度特征提取模块。最后,将模型的输出输入到Softmax分类器中进行滑坡易发性预测。以四川省雅安市为研究区域,我们将提出的DS-DRN方法与三种广泛使用的深度学习方法进行比较:CNN、CPCNN-RF和U-net。通过评估模型的准确性和性能,DS-DRN方法在预测准确性最高的同时还节省了计算成本。因此,所提出的模型能够更好地拟合滑坡易发性中的复杂非线性关系,有效挖掘深度空间特征,并解决复杂网络相关的高计算成本问题。