Faculty of Geosciences and Engineering, Southwest Jiaotong University, Sichuan Chengdu 611756, China.
Faculty of Geosciences and Engineering, Southwest Jiaotong University, Sichuan Chengdu 611756, China.
J Environ Manage. 2024 Aug;366:121921. doi: 10.1016/j.jenvman.2024.121921. Epub 2024 Jul 24.
Machine learning models are often viewed as black boxes in landslide susceptibility assessment, lacking an analysis of how input features predict outcomes. This makes it challenging to understand the mechanisms and key factors behind landslides. To enhance the interpretability of machine learning models in wide-area landslide susceptibility assessments, this study uses the Shapely method to explore the contributions of feature factors from local, global, and spatial perspectives. Landslide susceptibility assessments were conducted using random forest (RF), support vector machine (SVM), and eXtreme Gradient Boosting (XGBoost) models, focusing on the geologically complex Sichuan-Tibet region. Initially, the study revealed the contributions of specific key feature factors to landslides from a local perspective. It then examines the overall impact of interactions among feature factors on landslide occurrence globally. Finally, it unveils the spatial distribution patterns of the contributions of various feature factors to landslide occurrence. The analysis indicates the following: (1) The XGBoost model excels in landslide susceptibility assessment, achieving accuracy, precision, recall, F1-score, and AUC values of 0.7815, 0.7858, 0.7962, 0.7910, and 0.86, respectively; (2) The Shapely method identifies the leading factors for landslides in the Sichuan-Tibet region as Elevation (3000-4000 m), PGA (1-2 g), NDVI (<0.5), and distance to rivers (<3 km); (3) Using the Shapely method, the study explains the contributions, interaction mechanisms, and spatial distribution patterns of landslide susceptibility feature factors across local, global, and spatial perspectives. These findings offer new avenues and methods for the in-depth exploration and scientific prediction of landslide risks.
机器学习模型在滑坡易发性评估中通常被视为“黑箱”,缺乏对输入特征如何预测结果的分析。这使得理解滑坡背后的机制和关键因素变得具有挑战性。为了提高机器学习模型在大面积滑坡易发性评估中的可解释性,本研究使用 Shapley 方法从局部、全局和空间角度探索特征因素的贡献。使用随机森林 (RF)、支持向量机 (SVM) 和极端梯度提升 (XGBoost) 模型进行滑坡易发性评估,重点关注地质复杂的川藏地区。首先,该研究从局部角度揭示了特定关键特征因素对滑坡的贡献。然后,它研究了特征因素之间相互作用对全球滑坡发生的整体影响。最后,揭示了各种特征因素对滑坡发生的贡献的空间分布模式。分析表明:(1) XGBoost 模型在滑坡易发性评估方面表现出色,达到了 0.7815、0.7858、0.7962、0.7910 和 0.86 的精度、精度、召回率、F1 得分和 AUC 值;(2) Shapley 方法确定了川藏地区滑坡的主要因素为 Elevation (3000-4000 m)、PGA (1-2 g)、NDVI(<0.5) 和距河流的距离(<3 km);(3) 使用 Shapley 方法,研究解释了滑坡易发性特征因素在局部、全局和空间视角下的贡献、相互作用机制和空间分布模式。这些发现为深入探索和科学预测滑坡风险提供了新的途径和方法。