Rincón Erwin Hernando Hernández, Jimenez Daniel, Aguilar Lizeth Alexandra Chavarro, Flórez Juan Miguel Pérez, Tapia Álvaro Enrique Romero, Peñuela Claudia Liliana Jaimes
Department of Family Medicine and Public Health, Facultad de Medicina, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia.
Facultad de Medicina, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia.
BMC Med Educ. 2025 Apr 12;25(1):526. doi: 10.1186/s12909-025-07089-8.
INTRODUCTION: The integration of artificial intelligence (AI) in healthcare has transformed clinical practices and medical education, with technologies like diagnostic algorithms and clinical decision support increasingly incorporated into curricula. However, there is still a gap in preparing future physicians to use these technologies effectively and ethically. OBJECTIVE: This scoping review maps the integration of artificial intelligence (AI) in undergraduate medical education (UME), focusing on curriculum development, student competency enhancement, and institutional barriers to AI adoption. MATERIALS AND METHODS: A comprehensive search in PubMed, Scopus, and BIREME included articles from 2019 onwards, limited to English and Spanish publications on AI in UME. Exclusions applied to studies focused on postgraduate education or non-medical fields. Data were analyzed using thematic analysis to identify patterns in AI curriculum development and implementation. RESULTS: A total of 34 studies were reviewed, representing diverse regions and methodologies, including cross-sectional studies, narrative reviews, and intervention studies. Findings revealed a lack of standardized AI curriculum frameworks and notable global discrepancies. Key elements such as ethical training, collaborative learning, and digital competence were identified as essential, with an emphasis on transversal skills that support AI as a tool rather than a standalone subject. CONCLUSIONS: This review underscores the need for a standardized, adaptable AI curriculum in UME that prioritizes transversal skills, including digital competence and ethical awareness, to support AI's gradual integration. Embedding AI as a practical tool within interdisciplinary, patient-centered frameworks fosters a balanced approach to technology in healthcare. Further regional research is recommended to develop frameworks that align with cultural and educational needs, ensuring AI integration in UME promotes both technical and ethical competencies.
引言:人工智能(AI)在医疗保健领域的整合已经改变了临床实践和医学教育,诊断算法和临床决策支持等技术越来越多地被纳入课程。然而,在让未来的医生有效且合乎道德地使用这些技术方面,仍然存在差距。 目的:本范围综述梳理了人工智能(AI)在本科医学教育(UME)中的整合情况,重点关注课程开发、学生能力提升以及机构采用AI的障碍。 材料与方法:在PubMed、Scopus和BIREME中进行全面检索,纳入2019年起的文章,限于关于UME中AI的英文和西班牙文出版物。排除专注于研究生教育或非医学领域的研究。使用主题分析对数据进行分析,以确定AI课程开发和实施中的模式。 结果:共审查了34项研究,代表了不同地区和方法,包括横断面研究、叙述性综述和干预研究。研究结果显示缺乏标准化的AI课程框架以及显著的全球差异。伦理培训、协作学习和数字能力等关键要素被确定为必不可少的,强调将AI作为一种工具而非独立学科来支持的横向技能。 结论:本综述强调在UME中需要一个标准化、可适应的AI课程,该课程优先考虑横向技能,包括数字能力和伦理意识,以支持AI的逐步整合。将AI作为一种实用工具嵌入跨学科、以患者为中心的框架中,有助于在医疗保健中采取平衡的技术应用方法。建议进一步开展区域研究,以制定符合文化和教育需求的框架,确保UME中的AI整合既能提升技术能力又能培养伦理能力。
BMC Med Educ. 2025-4-12
J Med Internet Res. 2025-4-4
JBI Database System Rev Implement Rep. 2015-10
BMC Med Educ. 2024-7-27
Rev Med Inst Mex Seguro Soc. 2025-8-14
J Med Internet Res. 2024-8-28
Singapore Med J. 2024-3-1
Cureus. 2023-11-28