Suppr超能文献

医学影像教育中的人工智能:本科课程开发建议

Artificial intelligence in medical imaging education: Recommendations for undergraduate curriculum development.

作者信息

Crotty E, Singh A, Neligan N, Chamunyonga C, Edwards C

机构信息

Queensland University of Technology, School of Clinical Sciences, Faculty of Health, Brisbane, QLD, Australia.

Queensland University of Technology, School of Clinical Sciences, Faculty of Health, Brisbane, QLD, Australia; Department of Medical Imaging, Redcliffe Hospital, Redcliffe, QLD, Australia.

出版信息

Radiography (Lond). 2024 Dec;30 Suppl 2:67-73. doi: 10.1016/j.radi.2024.10.008. Epub 2024 Oct 24.

Abstract

OBJECTIVES

Artificial intelligence (AI) is rapidly being integrated into medical imaging practice, prompting calls to enhance AI education in undergraduate radiography programs. Combining evidence from literature, practitioner insights, and industry perspectives, this paper provides recommendations for medical imaging undergraduate education, including curriculum revision and re-alignment.

KEY FINDINGS

A proposed modular framework is outlined to assist course providers in integrating AI into university programs. An example course design includes modules on data science fundamentals, machine learning, AI ethics and patient safety, governance and regulation, AI tool evaluation, and clinical applications. A proposal to embed these longitudinally in the curriculum combined with hands-on experience and work-integrated learning will help develop the necessary knowledge of AI and its real-world impacts. Authentic assessment examples reinforce learning, such as critically appraising published research and reflecting on current technologies. Maintenance of an up-to-date curriculum will require a collaborative, multidisciplinary approach involving educators, clinicians, and industry professionals.

CONCLUSION

Integrating AI education into undergraduate medical imaging programs equips future radiographers in an evolving technological landscape. A strategic approach to embedding AI modules throughout degree programs assures students a comprehensive understanding of AI principles, skills in utilising AI tools effectively, and the ability to critically evaluate their implications.

IMPLICATIONS FOR PRACTICE

The practical implementation of undergraduate AI education will prepare radiographers to incorporate these technologies while assuring patient care.

摘要

目标

人工智能(AI)正迅速融入医学影像实践,这促使人们呼吁加强本科放射学专业的人工智能教育。本文结合文献证据、从业者见解和行业观点,为医学影像本科教育提供建议,包括课程修订与调整。

主要发现

概述了一个拟议的模块化框架,以协助课程提供者将人工智能融入大学课程。一个示例课程设计包括数据科学基础、机器学习、人工智能伦理与患者安全、治理与监管、人工智能工具评估以及临床应用等模块。将这些模块纵向嵌入课程并结合实践经验和工作整合学习的提议,将有助于培养必要的人工智能知识及其对现实世界的影响。真实的评估示例可强化学习,例如批判性评价已发表的研究并反思当前技术。维持最新的课程需要教育工作者、临床医生和行业专业人员采取协作的多学科方法。

结论

将人工智能教育融入本科医学影像课程,能使未来的放射技师适应不断发展的技术环境。在整个学位课程中嵌入人工智能模块的战略方法,可确保学生全面理解人工智能原理、有效使用人工智能工具的技能以及批判性评估其影响的能力。

对实践的启示

本科人工智能教育的实际实施将使放射技师在确保患者护理的同时,能够采用这些技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验