Suppr超能文献

人工智能揭秘:当前在医学教育评估中的状态和未来作用

Demystifying AI: Current State and Future Role in Medical Education Assessment.

出版信息

Acad Med. 2024 Apr 1;99(4S Suppl 1):S42-S47. doi: 10.1097/ACM.0000000000005598. Epub 2023 Dec 28.

Abstract

Medical education assessment faces multifaceted challenges, including data complexity, resource constraints, bias, feedback translation, and educational continuity. Traditional approaches often fail to adequately address these issues, creating stressful and inequitable learning environments. This article introduces the concept of precision education, a data-driven paradigm aimed at personalizing the educational experience for each learner. It explores how artificial intelligence (AI), including its subsets machine learning (ML) and deep learning (DL), can augment this model to tackle the inherent limitations of traditional assessment methods.AI can enable proactive data collection, offering consistent and objective assessments while reducing resource burdens. It has the potential to revolutionize not only competency assessment but also participatory interventions, such as personalized coaching and predictive analytics for at-risk trainees. The article also discusses key challenges and ethical considerations in integrating AI into medical education, such as algorithmic transparency, data privacy, and the potential for bias propagation.AI's capacity to process large datasets and identify patterns allows for a more nuanced, individualized approach to medical education. It offers promising avenues not only to improve the efficiency of educational assessments but also to make them more equitable. However, the ethical and technical challenges must be diligently addressed. The article concludes that embracing AI in medical education assessment is a strategic move toward creating a more personalized, effective, and fair educational landscape. This necessitates collaborative, multidisciplinary research and ethical vigilance to ensure that the technology serves educational goals while upholding social justice and ethical integrity.

摘要

医学教育评估面临多方面的挑战,包括数据复杂性、资源限制、偏差、反馈转化以及教育连续性等问题。传统方法往往无法充分解决这些问题,导致学习环境紧张且不公平。

本文引入了精准教育的概念,这是一种数据驱动的范式,旨在为每个学习者个性化教育体验。它探讨了人工智能(AI),包括其子集机器学习(ML)和深度学习(DL),如何增强这一模式,以解决传统评估方法的固有局限性。

AI 可以实现主动数据收集,提供一致和客观的评估,同时减轻资源负担。它不仅有可能彻底改变能力评估,还可能改变参与式干预措施,如个性化辅导和风险学员的预测分析。本文还讨论了将 AI 融入医学教育中所面临的关键挑战和伦理问题,如算法透明度、数据隐私以及偏差传播的可能性。

AI 处理大数据集和识别模式的能力为医学教育提供了更细致、个性化的方法。它不仅为提高教育评估的效率提供了有前途的途径,还使它们更加公平。然而,必须认真应对伦理和技术挑战。

本文得出的结论是,在医学教育评估中采用 AI 是朝着创建更个性化、更有效、更公平的教育环境迈出的战略性举措。这需要协作性的、多学科的研究和伦理监督,以确保技术服务于教育目标,同时维护社会公正和伦理完整性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验