Yuan Jianqi, Bai Yu, Lenz Claudius, Reilly-Schott Vincent, Schneider Hans, Lai Bin, Krömer Jens Olaf
Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
ChemSusChem. 2025 Jul 1;18(13):e202402543. doi: 10.1002/cssc.202402543. Epub 2025 Apr 25.
Biophotovoltaics (BPV) is a novel biohybrid solution to utilize solar energy potentially at high energy efficiency, by exploiting the water splitting in oxygenic photoautotrophs and electrochemical electron harvest. Unlike model electrogens, known phototrophic microbes benefit from redox mediators for extracting the photosynthetic electrons and transferring them to the external electron sink for further utilization. In this work, three representative mediators, i.e., 1,4-benzoquinone (BQ), [Co(bpy)] (CoBP), and ferricyanide, are chosen and systematically evaluated for their impacts on the microbial physiology and electrogenic activity of Synechocystis sp. PCC6803. This work aimed to generate a knowledge base to guide future mediator selection and design. The results suggest ferricyanide remains the best option, as being the only mediator that promoted long-term current output. However, both BQ and CoBP produce higher current densities than ferricyanide, albeit only for a short time. Comprehensive analysis of the photosystem using fluorometric methods suggests that BQ strongly increases the PQ/PQH ratio, while CoBP inhibits the electron flow from plastoquinone to photosystem I at high concentrations. Both mediators interrupt the photosynthetic electron flow and consequently cell growth. Eliminating the contribution of storage carbon to the intracellular electron flux demonstrates that all three chemicals can extract electrons originating from water splitting.
生物光伏(BPV)是一种新型生物混合解决方案,通过利用光合自养生物中的水分解和电化学电子捕获,有可能以高能效利用太阳能。与模式产电菌不同,已知的光合微生物受益于氧化还原介质来提取光合电子,并将其转移到外部电子受体以供进一步利用。在这项工作中,选择了三种代表性介质,即1,4-苯醌(BQ)、[Co(bpy)](CoBP)和铁氰化物,并系统评估了它们对集胞藻PCC6803的微生物生理学和产电活性的影响。这项工作旨在建立一个知识库,以指导未来介质的选择和设计。结果表明,铁氰化物仍然是最佳选择,因为它是唯一能促进长期电流输出的介质。然而,BQ和CoBP都能产生比铁氰化物更高的电流密度,尽管只是在短时间内。使用荧光法对光系统进行的综合分析表明,BQ强烈增加PQ/PQH比率,而CoBP在高浓度下抑制从质体醌到光系统I的电子流动。两种介质都中断了光合电子流动,从而影响细胞生长。消除储存碳对细胞内电子通量的贡献表明,这三种化学物质都能提取源自水分解的电子。