Paddenberg-Schubert Eva, Midlej Kareem, Krohn Sebastian, Schröder Agnes, Awadi Obaida, Masarwa Samir, Lone Iqbal M, Zohud Osayd, Kirschneck Christian, Watted Nezar, Proff Peter, Iraqi Fuad A
Department of Orthodontics, University Hospital of Regensburg, University of Regensburg, 93047, Regensburg, Germany.
Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel.
Sci Rep. 2025 Apr 13;15(1):12738. doi: 10.1038/s41598-025-97717-6.
The precise and efficient diagnosis of an individual's skeletal class is necessary in orthodontics to ensure correct and stable treatment planning. However, it is difficult to efficiently determine the true skeletal class due to several correlations between various anatomic structures. The primary outcome of this prospective cross-sectional study was developing a machine learning model for classifying patients as skeletal class I and III. Furthermore, the investigation intended to compare cephalometric variables between skeletal class I and III as well as between age and sex-specific subgroups to analyse correlations between cephalometric parameters and to perform Principal Component Analysis (PCA) to identify the most important variables contributing to skeletal class I and III variances. This study was based on the pre-treatment lateral cephalograms of 509 German orthodontic patients diagnosed as skeletal class I (n = 341) or III (n = 168) according to the individualised ANB of Panagiotidis and Witt, following descriptive analyses of cephalometric parameters, correlation analyses followed by Principal Component Analysis (PCA) to identify key cephalometric variables. Machine learning models, including Random Forest (RF), Classification and Regression Trees (CART), k-nearest Neighbors (KNN), Linear Discriminant Analysis (LDA), Support Vector Machines (SVM), and Generalized Linear Model (GLM), were evaluated for accuracy. Within the same skeletal class, age influenced cephalometric parameters: in skeletal class I, adolescents presented a more horizontal pattern (PFH/AFH, Gonial angle, NL-ML) and prominent mandible (SNB, SN-Pg) than children. In skeletal class III, the degree of sagittal discrepancy between jaw bases was most notable in adults (ANB: III_Age > 21-III _14 < Age < 20 - 1.78°). Comparing skeletal class I and III, the latter had more prognathic mandibles (SNB) and compensated incisors' inclination (proclination of the upper (+ 1/NA: 9.01°), retroinclination of the lower incisors (- 1/ML: 8.99°). Among others, a correlation was found between the sagittal (degree of prognathism, SNB) and vertical (inclination, ML-NSL) orientation of the mandible (skeletal class I: p < 0.001, ρ = - 0.742; skeletal class III: p < 0.001, ρ = - 0.665). PCA revealed that the first four principal components explain 93% of the variance in skeletal class I/III diagnosis and that these parameters had the most influence loading score on the first component-PFH/AFH ratio (0.35), SNB angle (0.35), SN-Pg (0.37), and ML-NSL (- 0.35). Evaluating machine learning models, the general model, including all cephalometric parameters, age, and sex, resulted in perfect (1.00) accuracy and kappa scores compared to the gold standard Calculated_ANB with the model's RF and CART. In model 2 the amount of input variables was reduced (Wits, SNB only), but the accuracy (0.88), and kappa (0.73) were still good in the KNN model. In the last section of this study, we applied different machine learning classification models. We examined the ability of the parameters-SNA, SNB, and ML-NSL angles to predict the classification as skeletal class I or III. The results demonstrated that the GLM model gained an accuracy of 0.99 (Accuracy = 0.99, Kappa = 0.97). The precise diagnosis of skeletal class I/III can be simplified by applying the machine learning model GLM with the input variables SNA, SNB, and ML-NSL only. This stresses the importance of their correct identification. However, considering all skeletal classes, a larger population is needed to validate and generalize this approach.
在正畸治疗中,准确高效地诊断个体的骨骼类型对于确保正确且稳定的治疗计划至关重要。然而,由于各种解剖结构之间存在多种关联,难以有效地确定真正的骨骼类型。这项前瞻性横断面研究的主要成果是开发一种机器学习模型,用于将患者分类为骨骼I类和III类。此外,该研究旨在比较骨骼I类和III类之间以及年龄和性别特定亚组之间的头影测量变量,以分析头影测量参数之间的相关性,并进行主成分分析(PCA),以确定导致骨骼I类和III类差异的最重要变量。本研究基于509名德国正畸患者的治疗前侧位头影测量片,这些患者根据Panagiotidis和Witt的个体化ANB被诊断为骨骼I类(n = 341)或III类(n = 168)。在对头影测量参数进行描述性分析之后,进行相关性分析,随后进行主成分分析(PCA)以识别关键的头影测量变量。对包括随机森林(RF)、分类与回归树(CART)、k近邻(KNN)、线性判别分析(LDA)、支持向量机(SVM)和广义线性模型(GLM)在内的机器学习模型进行了准确性评估。在同一骨骼类型中,年龄影响头影测量参数:在骨骼I类中,青少年呈现出比儿童更水平的模式(PFH/AFH、下颌角、NL-ML)和更突出的下颌(SNB、SN-Pg)。在骨骼III类中,颌骨基底之间的矢状差异程度在成年人中最为显著(ANB:III_Age > 21 - III_14 < Age < 20 - 1.78°)。比较骨骼I类和III类,后者有更前突的下颌(SNB)和代偿性切牙倾斜(上切牙前倾(+1/NA:9.01°),下切牙后倾(-1/ML:8.99°)。其中,发现下颌的矢状(前突程度,SNB)和垂直(倾斜度,ML-NSL)方向之间存在相关性(骨骼I类:p < 0.001,ρ = -0.742;骨骼III类:p < 0.001,ρ = -0.665)。主成分分析表明,前四个主成分解释了骨骼I/III类诊断中93%的方差,并且这些参数在第一成分上的载荷得分影响最大——PFH/AFH比值(0.35)、SNB角(0.35)、SN-Pg(0.37)和ML-NSL(-0.35)。评估机器学习模型时,与金标准Calculated_ANB相比,包含所有头影测量参数、年龄和性别的通用模型在随机森林(RF)和分类与回归树(CART)模型中得出了完美的(1.00)准确性和kappa分数。在模型2中,输入变量数量减少(仅保留Wits、SNB),但在KNN模型中准确性(0.88)和kappa(0.73)仍然良好。在本研究的最后部分,我们应用了不同的机器学习分类模型。我们检验了参数——SNA、SNB和ML-NSL角预测分类为骨骼I类或III类的能力。结果表明,广义线性模型(GLM)获得了0.99的准确性(准确性 = 0.99,Kappa = 0.97)。仅应用输入变量为SNA、SNB和ML-NSL的广义线性机器学习模型可以简化骨骼I/III类的精确诊断。这强调了正确识别它们的重要性。然而,考虑到所有骨骼类型,需要更大的样本量来验证和推广这种方法。