Suppr超能文献

阿拉伯人骨性Ⅱ类和Ⅲ类患者的侧貌头影测量参数和机器学习模型的应用。

Lateral cephalometric parameters among Arab skeletal classes II and III patients and applying machine learning models.

机构信息

Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, University of Tel-Aviv, Tel-Aviv, 6997801, Israel.

Center for Dentistry Research and Aesthetics, Jatt, 4491800, Israel.

出版信息

Clin Oral Investig. 2024 Sep 3;28(9):511. doi: 10.1007/s00784-024-05900-2.

Abstract

BACKGROUND

The World Health Organization considers malocclusion one of the most essential oral health problems. This disease influences various aspects of patients' health and well-being. Therefore, making it easier and more accurate to understand and diagnose patients with skeletal malocclusions is necessary.

OBJECTIVES

The main aim of this research was the establishment of machine learning models to correctly classify individual Arab patients, being citizens of Israel, as skeletal class II or III. Secondary outcomes of the study included comparing cephalometric parameters between patients with skeletal class II and III and between age and gender-specific subgroups, an analysis of the correlation of various cephalometric variables, and principal component analysis in skeletal class diagnosis.

METHODS

This quantitative, observational study is based on data from the Orthodontic Center, Jatt, Israel. The experimental data consisted of the coded records of 502 Arab patients diagnosed as Class II or III according to the Calculated_ANB. This parameter was defined as the difference between the measured ANB angle and the individualized ANB of Panagiotidis and Witt. In this observational study, we focused on the primary aim, i.e., the establishment of machine learning models for the correct classification of skeletal class II and III in a group of Arab orthodontic patients. For this purpose, various ML models and input data was tested after identifying the most relevant parameters by conducting a principal component analysis. As secondary outcomes this study compared the cephalometric parameters and analyzed their correlations between skeletal class II and III as well as between gender and age specific subgroups.

RESULTS

Comparison of the two groups demonstrated significant differences between skeletal class II and class III patients. This was shown for the parameters NL-NSL angle, PFH/AFH ratio, SNA angle, SNB angle, SN-Ba angle. SN-Pg angle, and ML-NSL angle in skeletal class III patients, and for S-N (mm) in skeletal class II patients. In skeletal class II and skeletal class III patients, the results showed that the Calculated_ANB correlated well with many other cephalometric parameters. With the help of the Principal Component Analysis (PCA), it was possible to explain about 71% of the variation between the first two PCs. Finally, applying the stepwise forward Machine Learning models, it could be demonstrated that the model works only with the parameters Wits appraisal and SNB angle was able to predict the allocation of patients to either skeletal class II or III with an accuracy of 0.95, compared to a value of 0.99 when all parameters were used ("general model").

CONCLUSION

There is a significant relationship between many cephalometric parameters within the different groups of gender and age. This study highlights the high accuracy and power of Wits appraisal and the SNB angle in evaluating the classification of orthodontic malocclusion.

摘要

背景

世界卫生组织认为错颌畸形是最基本的口腔健康问题之一。这种疾病影响患者健康和福祉的各个方面。因此,更轻松、更准确地理解和诊断骨骼错颌畸形患者是必要的。

目的

本研究的主要目的是建立机器学习模型,正确分类以色列阿拉伯个体患者为骨骼 II 类或 III 类。研究的次要结果包括比较骨骼 II 类和 III 类患者的头影测量参数以及年龄和性别特定亚组之间的参数,分析各种头影测量变量的相关性,以及在骨骼分类诊断中进行主成分分析。

方法

本研究为基于以色列 Jatt 正畸中心数据的定量观察性研究。实验数据由 502 名根据计算 ANB 诊断为 II 类或 III 类的阿拉伯患者的编码记录组成。该参数定义为测量 ANB 角与 Panagiotidis 和 Witt 个体化 ANB 之间的差异。在这项观察性研究中,我们专注于主要目的,即建立正确分类骨骼 II 类和 III 类的阿拉伯正畸患者的机器学习模型。为此,通过进行主成分分析来识别最相关的参数后,测试了各种 ML 模型和输入数据。作为次要结果,本研究比较了骨骼 II 类和 III 类患者的头影测量参数,并分析了它们之间的相关性,以及性别和年龄特定亚组之间的相关性。

结果

比较两组结果表明,骨骼 II 类和 III 类患者之间存在显著差异。这表现在 NL-NSL 角、PFH/AFH 比值、SNA 角、SNB 角、SN-Ba 角、SN-Pg 角和 ML-NSL 角等参数中,而骨骼 II 类患者中 S-N(mm)参数则存在差异。在骨骼 II 类和 III 类患者中,结果表明计算 ANB 与许多其他头影测量参数相关性良好。借助主成分分析(PCA),可以解释前两个 PCs 之间约 71%的变化。最后,应用逐步向前机器学习模型,可以证明仅使用 Wits 评价和 SNB 角这两个参数的模型能够以 0.95 的准确度预测患者分配到骨骼 II 类或 III 类,而使用所有参数的模型准确度为 0.99(“通用模型”)。

结论

在不同性别和年龄组中,许多头影测量参数之间存在显著关系。本研究强调了 Wits 评价和 SNB 角在评估正畸错颌畸形分类中的高度准确性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c525/11369042/d4e264809b04/784_2024_5900_Fig1_HTML.jpg

相似文献

2
Correlation of Dental and Skeletal Malocclusions in Sagittal Plane among Saudi Orthodontic Patients.
J Contemp Dent Pract. 2015 May 1;16(5):353-9. doi: 10.5005/jp-journals-10024-1689.
3
Comparison between cephalometric classification methods for sagittal jaw relationships.
Eur J Oral Sci. 1997 Jun;105(3):221-7. doi: 10.1111/j.1600-0722.1997.tb00204.x.
6
Evaluation of the soft tissue facial profile in different skeletal malocclusions in relation to age.
BMC Oral Health. 2024 Jun 20;24(1):711. doi: 10.1186/s12903-024-04486-1.
7
Relationship between skeletal Class II and Class III malocclusions with vertical skeletal pattern.
Dental Press J Orthod. 2019 Sep 5;24(4):63-72. doi: 10.1590/2177-6709.24.4.063-072.oar.

本文引用的文献

1
East Asian and Southern European craniofacial class III phenotype: two sides of the same coin?
Clin Oral Investig. 2024 Jan 9;28(1):84. doi: 10.1007/s00784-023-05386-4.
3
Novel Machine Learning Algorithms for Prediction of Treatment Decisions in Adult Patients With Class III Malocclusion.
J Oral Maxillofac Surg. 2023 Nov;81(11):1391-1402. doi: 10.1016/j.joms.2023.07.137. Epub 2023 Jul 26.
6
High-fat diet and oral infection induced type 2 diabetes and obesity development under different genetic backgrounds.
Animal Model Exp Med. 2023 Apr;6(2):131-145. doi: 10.1002/ame2.12311. Epub 2023 Apr 7.
7
Dissecting the Complexity of Skeletal-Malocclusion-Associated Phenotypes: Mouse for the Rescue.
Int J Mol Sci. 2023 Jan 29;24(3):2570. doi: 10.3390/ijms24032570.
9
Prevalence of Dental Malocclusions in Different Geographical Areas: Scoping Review.
Dent J (Basel). 2021 Oct 11;9(10):117. doi: 10.3390/dj9100117.
10
Machine learning in orthodontics: Challenges and perspectives.
Adv Clin Exp Med. 2021 Oct;30(10):1065-1074. doi: 10.17219/acem/138702.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验