Chan Rosalind Sin Man, Lee Sang Jin, Wang Fang, Zhou Tianyu, Kishan Ravi, Shum Ho Cheung, Yang Weifa, Su Yu-Xiong, Tsoi James Kit Hon, Diwan Ashish D, Prusty B Gangadhara, Cho Kiho
Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China.
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China.
ACS Appl Mater Interfaces. 2025 Apr 23;17(16):23522-23535. doi: 10.1021/acsami.4c22032. Epub 2025 Apr 13.
Medical implants, being biomaterials with increasing global use, continue to attract researchers focused on enhancing clinical performance. In situations requiring bone substitutes, there is a search for advancements in synthetic graft biomaterials, with polymer-based implants being one of the potential materials. Thus, this study aims to develop versatile nanohydroxyapatite (HAP) biocomposites that can not only be generalized by resin composite systems but also be applicable for 3D printing, overcoming the limitations associated with traditional implants. Polymeric biocomposites are prepared by incorporating HAPs and strontium-doped SiO glass particles (GPs) into a photocurable methacrylate monomer system, followed by 3 min of cold atmosphere plasma irradiation. In light of our findings, this medical implant possesses strong mechanical strength. Its surface hydrophilicity is enhanced through cold plasma treatment, which involves surface dry etching with nanoscale precision and exposing the embedded nanofillers to the outmost surface. This cold plasma treatment also induces osteogenic activity and bone integration . Furthermore, the 3D printability is demonstrated through the fabrication of a gyroid lattice structure. Collectively, this HAP-biocomposite exhibits promising biomechanical and biological properties, providing potential for revolutionizing future implant applications in dental and maxillofacial reconstruction as well as orthopedic interbody fusion.
医用植入物作为在全球使用日益广泛的生物材料,持续吸引着专注于提升其临床性能的研究人员。在需要骨替代物的情况下,人们一直在探索合成移植生物材料的进展,基于聚合物的植入物是潜在材料之一。因此,本研究旨在开发多功能纳米羟基磷灰石(HAP)生物复合材料,这种材料不仅可以通过树脂复合系统进行推广,还适用于3D打印,克服传统植入物相关的局限性。通过将HAP和掺锶SiO玻璃颗粒(GPs)掺入光固化甲基丙烯酸酯单体体系中,随后进行3分钟的冷气氛等离子体辐照,制备出聚合物生物复合材料。根据我们的研究结果,这种医用植入物具有很强的机械强度。通过冷等离子体处理提高了其表面亲水性,该处理涉及纳米级精度的表面干法蚀刻,并将嵌入的纳米填料暴露到最外层表面。这种冷等离子体处理还诱导了成骨活性和骨整合。此外,通过制造螺旋状晶格结构展示了其3D打印性。总体而言,这种HAP生物复合材料展现出有前景的生物力学和生物学特性,为彻底改变未来在牙科和颌面重建以及骨科椎间融合中的植入物应用提供了潜力。