Suppr超能文献

通过刚性准晶结构材料中的分布式屈曲增强可变形性

Enhanced Deformability Through Distributed Buckling in Stiff Quasicrystalline Architected Materials.

作者信息

Rosa Matheus I N, Karapiperis Konstantinos, Radi Kaoutar, Pescialli Elias, Kochmann Dennis M

机构信息

Department of Mechanical and Process Engineering, ETH Zürich, Zurich, 8092, Switzerland.

School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, 1015, Switzerland.

出版信息

Adv Mater. 2025 Jun;37(24):e2505125. doi: 10.1002/adma.202505125. Epub 2025 Apr 14.

Abstract

Architected materials achieve unique mechanical properties through precisely engineered microstructures that minimize material usage. However, a key challenge of low-density materials is balancing high stiffness with stable deformability up to large strains. Current microstructures, which employ slender elements such as thin beams and plates arranged in periodic patterns to optimize stiffness, are largely prone to instabilities, including buckling and brittle collapse at low strains. This challenge is here addressed by introducing a new class of aperiodic architected materials inspired by quasicrystalline lattices. Beam networks derived from canonical quasicrystalline patterns, such as the Penrose tiling in two dimensions and icosahedral quasicrystals (IQCs) in three dimensions, are shown to create stiff, stretching-dominated topologies with non-uniform force chain distributions, effectively mitigating the global instabilities observed in periodic designs through distributed localized buckling instabilities. Numerical and experimental results confirm the effectiveness of these designs in combining stiffness and stable deformability at large strains, representing a significant advancement in the development of low-density metamaterials for applications requiring high impact resistance and energy absorption. These results demonstrate the potential of deterministic quasi-periodic topologies to bridge the gap between periodic and random structures, while branching toward uncharted territory in the property space of architected materials.

摘要

架构材料通过精确设计的微观结构实现独特的机械性能,从而最大限度地减少材料使用。然而,低密度材料的一个关键挑战是在高刚度与直至大应变时的稳定变形能力之间取得平衡。当前的微观结构采用诸如以周期性图案排列的细梁和薄板等细长元件来优化刚度,但在很大程度上容易出现不稳定性,包括在低应变时的屈曲和脆性坍塌。本文通过引入一类受准晶晶格启发的新型非周期性架构材料来应对这一挑战。源自规范准晶图案(如二维的彭罗斯镶嵌和三维的二十面体准晶(IQC))的梁网络,被证明能创建具有非均匀力链分布的、以拉伸为主的刚性拓扑结构,通过分布式局部屈曲不稳定性有效地减轻了在周期性设计中观察到的全局不稳定性。数值和实验结果证实了这些设计在大应变下结合刚度和稳定变形能力方面的有效性,这代表了在开发用于需要高抗冲击性和能量吸收的应用的低密度超材料方面的重大进展。这些结果证明了确定性准周期拓扑结构在弥合周期性结构和随机结构之间差距的潜力,同时在架构材料的性能空间中朝着未知领域发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f513/12177859/d06636d92d3f/ADMA-37-2505125-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验