Suppr超能文献

由独立准 BCC 纳米晶格金和铜制成的机械超材料,具有超高能量吸收能力。

Mechanical metamaterials made of freestanding quasi-BCC nanolattices of gold and copper with ultra-high energy absorption capacity.

机构信息

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.

School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Nat Commun. 2023 Mar 4;14(1):1243. doi: 10.1038/s41467-023-36965-4.

Abstract

Nanolattices exhibit attractive mechanical properties such as high strength, high specific strength, and high energy absorption. However, at present, such materials cannot achieve effective fusion of the above properties and scalable production, which hinders their applications in energy conversion and other fields. Herein, we report gold and copper quasi-body centered cubic (quasi-BCC) nanolattices with the diameter of the nanobeams as small as 34 nm. We show that the compressive yield strengths of quasi-BCC nanolattices even exceed those of their bulk counterparts, despite their relative densities below 0.5. Simultaneously, these quasi-BCC nanolattices exhibit ultrahigh energy absorption capacities, i.e., 100 ± 6 MJ m for gold quasi-BCC nanolattice and 110 ± 10 MJ m for copper quasi-BCC nanolattice. Finite element simulations and theoretical calculations reveal that the deformation of quasi-BCC nanolattice is dominated by nanobeam bending. And the anomalous energy absorption capacities substantially stem from the synergy of the naturally high mechanical strength and plasticity of metals, the size reduction-induced mechanical enhancement, and the quasi-BCC nanolattice architecture. Since the sample size can be scaled up to macroscale at high efficiency and affordable cost, the quasi-BCC nanolattices with ultrahigh energy absorption capacity reported in this work may find great potentials in heat transfer, electric conduction, catalysis applications.

摘要

纳米晶格具有吸引人的力学性能,如高强度、高比强度和高能量吸收能力。然而,目前这些材料无法实现上述性能的有效融合和可扩展的生产,这阻碍了它们在能量转换等领域的应用。在这里,我们报告了金和铜近体心立方(quasi-BCC)纳米晶格,其纳米梁的直径小至 34nm。我们表明,尽管相对密度低于 0.5,但近 BCC 纳米晶格的压缩屈服强度甚至超过了其体相的强度。同时,这些近 BCC 纳米晶格表现出超高的能量吸收能力,即金近 BCC 纳米晶格为 100±6MJ m,铜近 BCC 纳米晶格为 110±10MJ m。有限元模拟和理论计算表明,近 BCC 纳米晶格的变形主要由纳米梁弯曲控制。而异常的能量吸收能力主要源于金属固有的高强度和塑性、尺寸减小引起的力学增强以及近 BCC 纳米晶格结构的协同作用。由于样品尺寸可以以高效率和可承受的成本扩展到宏观尺度,因此本工作中报道的具有超高能量吸收能力的近 BCC 纳米晶格可能在热传递、电传导、催化应用等方面具有很大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0f7/9985601/82f3474f4426/41467_2023_36965_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验