AlGain Sulwan, Marra Alexandre R, Kobayashi Takaaki, Marra Pedro S, Celeghini Patricia Deffune, Hsieh Mariana Kim, Shatari Mohammed Abdu, Althagafi Samiyah, Alayed Maria, Ranavaya Jamila I, Boodhoo Nicole A, Meade Nicholas O, Fu Daniel, Sampson Mindy Marie, Rodriguez-Nava Guillermo, Zimmet Alex N, Ha David, Alsuhaibani Mohammed, Huddleston Boglarka S, Salinas Jorge L
King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
Division of Infectious Diseases & Geographic Medicine, Stanford University, Stanford, CA, USA.
Antimicrob Steward Healthc Epidemiol. 2025 Mar 31;5(1):e90. doi: 10.1017/ash.2025.47. eCollection 2025.
Artificial intelligence (AI) has the potential to enhance clinical decision-making, including in infectious diseases. By improving antimicrobial resistance prediction and optimizing antibiotic prescriptions, these technologies may support treatment strategies and address critical gaps in healthcare. This study evaluates the effectiveness of AI in guiding appropriate antibiotic prescriptions for infectious diseases through a systematic literature review.
We conducted a systematic review of studies evaluating AI (machine learning or large language models) used for guidance on prescribing appropriate antibiotics in infectious disease cases. Searches were performed in PubMed, CINAHL, Embase, Scopus, Web of Science, and Google Scholar for articles published up to October 25, 2024. Inclusion criteria focused on studies assessing the performance of AI in clinical practice, with outcomes related to antimicrobial management and decision-making.
Seventeen studies used machine learning as part of clinical decision support systems (CDSS). They improved prediction of antimicrobial resistance and optimized antimicrobial use. Six studies focused on large language models to guide antimicrobial therapy; they had higher prescribing error rates, patient safety risks, and needed precise prompts to ensure accurate responses.
AI, particularly machine learning integrated into CDSS, holds promise in enhancing clinical decision-making and improving antimicrobial management. However, large language models currently lack the reliability required for complex clinical applications. The indispensable role of infectious disease specialists remains critical for ensuring accurate, personalized, and safe treatment strategies. Rigorous validation and regular updates are essential before the successful integration of AI into clinical practice.
人工智能(AI)有潜力加强临床决策,包括在传染病领域。通过改进抗菌药物耐药性预测和优化抗生素处方,这些技术可能支持治疗策略并弥补医疗保健中的关键差距。本研究通过系统文献综述评估人工智能在指导传染病合理抗生素处方方面的有效性。
我们对评估用于指导传染病病例合理抗生素处方的人工智能(机器学习或大语言模型)的研究进行了系统综述。在PubMed、CINAHL、Embase、Scopus、Web of Science和谷歌学术上检索截至2024年10月25日发表的文章。纳入标准侧重于评估人工智能在临床实践中的表现的研究,其结果与抗菌药物管理和决策相关。
17项研究将机器学习用作临床决策支持系统(CDSS)的一部分。它们改进了对抗菌药物耐药性的预测并优化了抗菌药物的使用。6项研究侧重于大语言模型以指导抗菌治疗;它们的处方错误率更高,存在患者安全风险,并且需要精确的提示以确保准确的反应。
人工智能,特别是集成到临床决策支持系统中的机器学习,在加强临床决策和改善抗菌药物管理方面具有前景。然而,大语言模型目前缺乏复杂临床应用所需的可靠性。传染病专家的不可或缺作用对于确保准确、个性化和安全的治疗策略仍然至关重要。在将人工智能成功整合到临床实践之前,严格的验证和定期更新至关重要。