Suppr超能文献

揭示隐藏的负担:探索妇科癌症的心理影响及中国西南部地区抑郁症的预测模型

Unveiling the Hidden Burden: Exploring the Psychological Impact of Gynecological Cancers and Predictive Modeling of Depression in Southwest China.

作者信息

Sun Xingyu, Jiang Shiqi, Jiao Beibei, Wang Peijuan, Wang Qiong, He Lijuan, Yin Chengliang, Liu Ling, Wang Shaohua

机构信息

Department of Gynecology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China.

Department of Anesthesiology, The First Hospital of China Medical University, No.155 Nanjing Road, Heping Area, Shenyang, Liaoning Province, China.

出版信息

Depress Anxiety. 2024 Aug 2;2024:6512073. doi: 10.1155/2024/6512073. eCollection 2024.

Abstract

OBJECTIVE

To explore the psychological impact of gynecological cancers on middle-aged women in Southwest China and identify the risk factors for moderate to severe depressive symptoms.

METHODS

This cross-sectional study included 500 patients from Southwest China, divided into two groups: depression ( = 220) and no depression ( = 280). Data on demographics, clinical characteristics, and socioeconomic factors were collected. We developed a logistic regression model to predict depressive symptoms and assessed its accuracy using the area under the receiver operating characteristic curve (AUC).

RESULTS

The study cohort consisted of 500 middle-aged and young female cancer patients with a median age of 44 years. Significant predictors of depressive symptoms included younger age, higher economic stress levels, and out-of-pocket medical expenses. A comparative analysis showed that 220 patients exhibited depression symptoms, with these patients being generally younger (median age 41 years) compared to those without depression (median age 47 years, < 0.001). Economic stress was consistently higher in the depression group across all cancer types. Patients with ovarian cancer had a reduced risk of depression compared to those with cervical cancer. The predictive model demonstrated high accuracy in identifying depression risk, with an AUC of 0.888. Internal validation yielded an average AUC of 0.885, and external validation produced an AUC of 0.872, underscoring the model's robustness and reliability. These findings emphasize the complex interplay of demographic, socioeconomic, and clinical factors in the psychological well-being of gynecological cancer patients, highlighting the need for tailored psychological and financial support interventions.

CONCLUSION

Gynecological cancer patients in Southwest China experience significant psychological challenges, particularly younger women and those facing economic stress. Our predictive model can aid in early identification of those at risk for depression, emphasizing the importance of holistic care. Interventions should focus on both psychological and financial support to improve patient outcomes.

摘要

目的

探讨妇科癌症对中国西南部中年女性的心理影响,并确定中重度抑郁症状的风险因素。

方法

这项横断面研究纳入了来自中国西南部的500名患者,分为两组:抑郁组(n = 220)和非抑郁组(n = 280)。收集了人口统计学、临床特征和社会经济因素的数据。我们建立了一个逻辑回归模型来预测抑郁症状,并使用受试者工作特征曲线下面积(AUC)评估其准确性。

结果

研究队列包括500名中老年女性癌症患者,中位年龄为44岁。抑郁症状的显著预测因素包括年龄较小、经济压力水平较高和自付医疗费用。比较分析显示,220名患者表现出抑郁症状,这些患者通常比无抑郁症状的患者年轻(中位年龄41岁)(<0.001)。在所有癌症类型中,抑郁组的经济压力一直较高。与宫颈癌患者相比,卵巢癌患者抑郁风险降低。预测模型在识别抑郁风险方面显示出较高的准确性,AUC为0.888。内部验证的平均AUC为0.885,外部验证的AUC为0.872,强调了该模型的稳健性和可靠性。这些发现强调了人口统计学、社会经济和临床因素在妇科癌症患者心理健康中的复杂相互作用,突出了需要针对性的心理和经济支持干预措施。

结论

中国西南部的妇科癌症患者面临重大心理挑战,尤其是年轻女性和面临经济压力的女性。我们的预测模型有助于早期识别有抑郁风险的患者,强调全面护理的重要性。干预措施应侧重于心理和经济支持,以改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db57/11918813/890848f468b5/DA2024-6512073.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验