Suppr超能文献

运用机器学习识别中国护士抑郁症状的影响因素:一项多中心横断面研究

Identifying the Influencing Factors of Depressive Symptoms among Nurses in China by Machine Learning: A Multicentre Cross-Sectional Study.

作者信息

Li Shu, Sznajder Kristin K, Ning Lingfang, Gao Hong, Xie Xinyue, Liu Shuo, Shao Chunyu, Li Xinru, Yang Xiaoshi

机构信息

College of Health Management, China Medical University, Shenyang, Liaoning Province, China.

Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.

出版信息

J Nurs Manag. 2023 May 15;2023:5524561. doi: 10.1155/2023/5524561. eCollection 2023.

Abstract

BACKGROUND

Nurses' high workload can result in depressive symptoms. However, the research has underexplored the internal and external variables, such as organisational support, career identity, and burnout, which may predict depressive symptoms among Chinese nurses via machine learning (ML).

AIM

To predict nurses' depressive symptoms and identify the relevant factors by machine learning (ML) algorithms.

METHODS

A self-administered smartphone questionnaire was delivered to nurses to evaluate their depressive symptoms; 1,431 questionnaires and 28 internal and external features were collected. In the training set, the use of maximum relevance minimum redundancy ranked the features' importance. Five ML algorithms were used to establish models to identify nurses' depressive symptoms using different feature subsets, and the area under the curve (AUC) determined the optimal feature subset. Demographic characteristics were added to the optimal feature subset to establish the combined models. Each model's performance was evaluated using the test set.

RESULTS

The prevalence rate of depressive symptoms among Chinese nurses was 31.86%. The optimal feature subset comprised of sleep disturbance, chronic fatigue, physical fatigue, exhaustion, and perceived organisation support. The five models based on the optimal feature subset had good prediction performance on the test set (AUC: 0.871-0.895 and accuracy: 0.798-0.815). After adding the significant demographic characteristics, the performance of the five combined models slightly improved; the AUC and accuracy increased to 0.904 and 0.826 on the test set, respectively. The logistic regression analysis results showed the best and most stable performance while the univariate analysis results showed that external and internal personal features (AUC: 0.739-0.841) were more effective than demographic characteristics (AUC: 0.572-0.588) for predicting nurses' depressive symptoms.

CONCLUSIONS

ML could effectively predict nurses' depressive symptoms. Interventions to manage physical fatigue, sleep disorders, burnout, and organisational support may prevent depressive symptoms.

摘要

背景

护士的高工作量可能导致抑郁症状。然而,研究尚未充分探索可能通过机器学习(ML)预测中国护士抑郁症状的内部和外部变量,如组织支持、职业认同和职业倦怠。

目的

通过机器学习(ML)算法预测护士的抑郁症状并识别相关因素。

方法

向护士发放一份自行填写的智能手机调查问卷,以评估他们的抑郁症状;收集了1431份问卷和28个内部和外部特征。在训练集中,使用最大相关最小冗余方法对特征的重要性进行排序。使用五种ML算法,利用不同的特征子集建立模型来识别护士的抑郁症状,曲线下面积(AUC)确定最优特征子集。将人口统计学特征添加到最优特征子集中以建立组合模型。使用测试集评估每个模型的性能。

结果

中国护士抑郁症状的患病率为31.86%。最优特征子集包括睡眠障碍、慢性疲劳、身体疲劳、疲惫和感知到的组织支持。基于最优特征子集的五个模型在测试集上具有良好的预测性能(AUC:0.871 - 0.895,准确率:0.798 - 0.815)。添加显著的人口统计学特征后,五个组合模型的性能略有提高;测试集上的AUC和准确率分别提高到0.904和0.826。逻辑回归分析结果显示性能最佳且最稳定,而单变量分析结果表明,外部和内部个人特征(AUC:0.739 - 0.841)在预测护士抑郁症状方面比人口统计学特征(AUC:0.572 - 0.588)更有效。

结论

ML可以有效地预测护士的抑郁症状。管理身体疲劳、睡眠障碍、职业倦怠和组织支持的干预措施可能预防抑郁症状。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c7d/11918513/3c936e29d092/JONM2023-5524561.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验