Jiang Kaiwen, Liu Feng-Lin, Chen Shu-Yu, Wan Pengfei, Zhang Yuan, Lai Yu-Kun, Fu Hongbo, Gao Lin
IEEE Trans Vis Comput Graph. 2025 Oct;31(10):7938-7950. doi: 10.1109/TVCG.2025.3560869.
Animatable and relightable 3D facial generation has fundamental applications in computer vision and graphics. Although animation and relighting are highly correlated, previous methods usually address them separately. Effectively combining animation methods and relighting methods is nontrivial. In terms of explicit shading models, animatable methods cannot be easily extended to achieve realistic relighting results, such as shadow effects, due to prohibitive computational training costs. Regarding implicit lighting representations, current animatable methods cannot be incorporated due to their inharmonious animation representations, i.e., deforming spatial points. This paper, armed with a lightweight but effective lighting representation, presents a compatible animation representation to achieve a disentangled generative model of 3D animatable and relightable heads. Our represented animation allows for updating and control of realistic lighting effects. Due to the disentangled nature of our representations, we learn the animation and relighting from large-scale, in-the-wild videos instead of relying on a morphable model. We show that our method can synthesize geometrically consistent and detailed motion along with the disentangled control of lighting conditions. We further show that our method is still compatible with morphable models for driving generated avatars. Our method can also be extended to domains without video data by domain transfer to achieve a broader range of animatable and relightable head synthesis. We will release the code for reproducibility and facilitating future research.
可动画化且可重新打光的3D面部生成在计算机视觉和图形学中具有基础应用。尽管动画制作和重新打光高度相关,但以往的方法通常将它们分开处理。有效地结合动画方法和重新打光方法并非易事。就显式着色模型而言,由于计算训练成本过高,可动画化方法难以轻松扩展以实现逼真的重新打光效果,如阴影效果。对于隐式光照表示,由于当前可动画化方法的动画表示不协调,即空间点变形,因此无法纳入。本文采用轻量级但有效的光照表示,提出了一种兼容的动画表示,以实现3D可动画化且可重新打光头部的解缠生成模型。我们所表示的动画允许更新和控制逼真的光照效果。由于我们表示的解缠性质,我们从大规模的真实世界视频中学习动画和重新打光,而不是依赖可变形模型。我们表明,我们的方法可以合成几何上一致且详细的运动以及对照明条件的解缠控制。我们进一步表明,我们的方法仍然与用于驱动生成头像的可变形模型兼容。我们的方法还可以通过域转移扩展到没有视频数据的领域,以实现更广泛的可动画化和可重新打光头部合成。我们将发布代码以实现可重复性并促进未来的研究。