Suppr超能文献

IgStrand:一种用于免疫球蛋白折叠(Ig折叠)的通用残基编号方案,用于研究Ig蛋白质组和Ig相互作用组。

IgStrand: A universal residue numbering scheme for the immunoglobulin-fold (Ig-fold) to study Ig-proteomes and Ig-interactomes.

作者信息

Tawfeeq Caesar, Wang Jiyao, Khaniya Umesh, Madej Thomas, Song James, Abrol Ravinder, Youkharibache Philippe

机构信息

Department of Chemistry and Biochemistry, California State University Northridge, Northridge, California, United States of America.

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America.

出版信息

PLoS Comput Biol. 2025 Apr 14;21(4):e1012813. doi: 10.1371/journal.pcbi.1012813. eCollection 2025 Apr.

Abstract

The Immunoglobulin fold (Ig-fold) is found in proteins from all domains of life and represents the most populous fold in the human genome, with current estimates ranging from 2 to 3% of protein coding regions. That proportion is much higher in the surfaceome where Ig and Ig-like domains orchestrate cell-cell recognition, adhesion and signaling. The ability of Ig-domains to reliably fold and self-assemble through highly specific interfaces represents a remarkable property of these domains, making them key elements of molecular interaction systems: the immune system, the nervous system, the vascular system and the muscular system. We define a universal residue numbering scheme, common to all domains sharing the Ig-fold in order to study the wide spectrum of Ig-domain variants constituting the Ig-proteome and Ig-Ig interactomes at the heart of these systems. The "IgStrand numbering scheme" enables the identification of Ig structural proteomes and interactomes in and between any species, and comparative structural, functional, and evolutionary analyses. We review how Ig-domains are classified today as topological and structural variants and highlight the "Ig-fold irreducible structural signature" shared by all of them. The IgStrand numbering scheme lays the foundation for the systematic annotation of structural proteomes by detecting and accurately labeling Ig-, Ig-like and Ig-extended domains in proteins, which are poorly annotated in current databases and opens the door to accurate machine learning. Importantly, it sheds light on the robust Ig protein folding algorithm used by nature to form beta sandwich supersecondary structures. The numbering scheme powers an algorithm implemented in the interactive structural analysis software iCn3D to systematically recognize Ig-domains, annotate them and perform detailed analyses comparing any domain sharing the Ig-fold in sequence, topology and structure, regardless of their diverse topologies or origin. The scheme provides a robust fold detection and labeling mechanism that reveals unsuspected structural homologies among protein structures beyond currently identified Ig- and Ig-like domain variants. Indeed, multiple folds classified independently contain a common structural signature, in particular jelly-rolls. Examples of folds that harbor an "Ig-extended" architecture are given. Applications in protein engineering around the Ig-architecture are straightforward based on the universal numbering.

摘要

免疫球蛋白折叠(Ig折叠)存在于生命所有领域的蛋白质中,是人类基因组中数量最多的折叠结构,目前估计占蛋白质编码区的2%至3%。在表面组中,这一比例要高得多,其中免疫球蛋白(Ig)和Ig样结构域参与细胞间识别、黏附和信号传导。Ig结构域通过高度特异性界面可靠折叠和自组装的能力是这些结构域的显著特性,使其成为分子相互作用系统(免疫系统、神经系统、血管系统和肌肉系统)的关键要素。我们定义了一种通用的残基编号方案,该方案适用于所有具有Ig折叠的结构域,以便研究构成这些系统核心的Ig结构域变体、Ig蛋白质组和Ig-Ig相互作用组的广泛谱系。“Ig链编号方案”能够识别任何物种内部和之间的Ig结构蛋白质组和相互作用组,并进行比较结构、功能和进化分析。我们回顾了如今Ig结构域如何被分类为拓扑和结构变体,并强调了它们共有的“Ig折叠不可简化结构特征”。Ig链编号方案通过检测并准确标记蛋白质中的Ig、Ig样和Ig延伸结构域,为结构蛋白质组的系统注释奠定了基础,这些结构域在当前数据库中注释不足,并为准确的机器学习打开了大门。重要的是,它揭示了自然界用于形成β折叠超二级结构的强大Ig蛋白折叠算法。该编号方案为交互式结构分析软件iCn3D中实现的一种算法提供支持,以便系统地识别Ig结构域、对其进行注释,并进行详细分析,比较任何具有Ig折叠的结构域在序列、拓扑和结构方面的情况,无论它们的拓扑结构或起源如何。该方案提供了一种强大的折叠检测和标记机制,揭示了目前已鉴定的Ig和Ig样结构域变体之外的蛋白质结构之间未被怀疑的结构同源性。实际上,多个独立分类的折叠结构包含一个共同的结构特征,特别是果冻卷结构。文中给出了具有“Ig延伸”结构的折叠结构示例。基于通用编号,在围绕Ig结构的蛋白质工程中的应用很直接。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7680/12051499/b24d3a4004ad/pcbi.1012813.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验