Qiao Jie, Sun Wenli, Yin Wenhao, Hu Li, Wang Xinping, Liu Yi
School of Life Science and Technology, Wuhan Polytechnic University, Hubei, China.
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei, China.
Int J Biol Macromol. 2025 May;309(Pt 4):143121. doi: 10.1016/j.ijbiomac.2025.143121. Epub 2025 Apr 12.
Gene perturbation approaches have emerged as powerful tools for elucidating gene function and treating hereditary disorders. Previously, we developed a method for streamlined production of ready-to-use Cas9 ribonucleoproteins (RNPs) in Escherichia coli BL21(DE3). In this study, we present an improved approach by assembling Cas9 RNPs with an extended 'gRNA-shRNA' construct in the RNase III deficient strain HT115(DE3). Transfection of these engineered Cas9 RNPs into mammalian cells enables multidimensional genome manipulation, including simultaneous knockdown and knockout of target genes. Furthermore, the design of shRNA specifically targeting human DNA ligase IV (LIG4) significantly enhances efficiency in homology-directed repair genome editing. Collectively, our findings establish a user-friendly CRISPR/Cas9 RNP tool with immense potential for precise genome editing, gene function analysis, and gene therapy.
基因扰动方法已成为阐明基因功能和治疗遗传性疾病的强大工具。此前,我们开发了一种在大肠杆菌BL21(DE3)中简化生产即用型Cas9核糖核蛋白(RNP)的方法。在本研究中,我们提出了一种改进方法,即在RNase III缺陷菌株HT115(DE3)中用扩展的“gRNA-shRNA”构建体组装Cas9 RNP。将这些工程化的Cas9 RNP转染到哺乳动物细胞中能够实现多维度基因组操作,包括同时敲低和敲除靶基因。此外,特异性靶向人类DNA连接酶IV(LIG4)的shRNA设计显著提高了同源定向修复基因组编辑的效率。总体而言,我们的研究结果建立了一种用户友好的CRISPR/Cas9 RNP工具,在精确基因组编辑、基因功能分析和基因治疗方面具有巨大潜力。