Suppr超能文献

基于U-Net的脑脊液分布及脑室反流分级预测

U-Net-Based Prediction of Cerebrospinal Fluid Distribution and Ventricular Reflux Grading.

作者信息

Rieff Melanie, Holzberger Fabian, Lapina Oksana, Ringstad Geir, Magnus Valnes Lars, Warsza Bogna, Kristian Eide Per, Mardal Kent-André, Wohlmuth Barbara

机构信息

Department of Mathematics, School of Computation, Information, and Technology, Technical University of Munich, Garching, Germany.

Department of Computer Science, ETH Zurich, Zurich, Switzerland.

出版信息

NMR Biomed. 2025 May;38(5):e70029. doi: 10.1002/nbm.70029.

Abstract

Previous work indicates evidence that cerebrospinal fluid (CSF) plays a crucial role in brain waste clearance processes and that altered flow patterns are associated with various diseases of the central nervous system. In this study, we investigate the potential of deep learning to predict the distribution in human brain of a gadolinium-based CSF contrast agent (tracer) administered intrathecal. For this, T1-weighted magnetic resonance imaging (MRI) scans taken at multiple time points before and after injection were utilized. We propose a U-net-based supervised learning model to predict pixel-wise signal increase at its peak after 24 h. Performance is evaluated based on different tracer distribution stages provided during training, including predictions from baseline scans taken before injection. Our findings show that training with imaging data from only the first 2-h postinjection yields tracer flow predictions comparable to models trained with additional later-stage scans. Validation against ventricular reflux gradings from neuroradiologists confirmed alignment with expert evaluations. These results demonstrate that deep learning-based methods for CSF flow prediction deserve more attention, as minimizing MR imaging without compromising clinical analysis could enhance efficiency, improve patient well-being and lower healthcare costs.

摘要

先前的研究表明,有证据显示脑脊液(CSF)在脑废物清除过程中起关键作用,且流动模式的改变与多种中枢神经系统疾病相关。在本研究中,我们探究了深度学习预测鞘内注射钆基脑脊液造影剂(示踪剂)在人脑中分布的潜力。为此,我们利用了注射前后多个时间点采集的T1加权磁共振成像(MRI)扫描数据。我们提出了一种基于U-net的监督学习模型,以预测注射后24小时达到峰值时逐像素的信号增加情况。基于训练期间提供的不同示踪剂分布阶段评估性能,包括注射前基线扫描的预测结果。我们的研究结果表明,仅使用注射后前2小时的成像数据进行训练,所得示踪剂流动预测结果与使用额外后期扫描数据训练的模型相当。与神经放射科医生对脑室反流分级的验证结果证实了与专家评估的一致性。这些结果表明,基于深度学习的脑脊液流动预测方法值得更多关注,因为在不影响临床分析的情况下尽量减少磁共振成像可以提高效率、改善患者健康状况并降低医疗成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da9e/11996590/34730180793d/NBM-38-e70029-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验